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Abstract

Human motion prediction is a popular yet challenging
task in computer vision. Existing methods either ignore
scene context or focus on partial scene context of certain
key points. In this work, we aim to incorporate human-
environment interactions into motion prediction via prox-
imity data between joints and the surroundings. We de-
velop a framework to compute proximity maps and perform
data pipelining to sequentialise normalized 3D joint loca-
tions from the PROX dataset. We propose RNN and Trans-
former based models to perform human motion prediction
directly from 3D joint locations, and discuss a few alter-
native model designs. Qualitative and quantitative evalu-
ations performed on a validation set from PROX dataset
show that our models can predict natural human move-
ment trajectories with correct shapes with 5 input frames
and 10 prediction frames, but the overall ability to match
the ground-truth trajectory is limited. We provide a de-
tailed discussion on the explanation of limitations and fu-
ture works.

1. Introduction
Human motion prediction is one of the most popular

tasks of computer vision in recent years, as it is crucial for
applications such as self-driving cars, autonomous mobile
robots, or virtual reality, where motions of virtual humans
need to be planned realistically.
Existing methods of human motion prediction either ignore
scene context or focus on partial scene context of certain
key points, while, in reality, the motions of humans are of-
ten influenced or in reaction to their physical surroundings.
Therefore, to achieve realistic prediction of human motions,
it is important to consider the human-environment interac-
tions in the scene context.
In visual computing, a common representation of scene
context is RGBD video, which, for each frame, consists of
an RGB image and a corresponding depth image. Simi-
lar as [16] , we can encode human-environment interactions
via proximity by computing the distance between each body

part and its closest point in the scene. It is expected that this
additional information could improve the performance of
existing human motion prediction models.
This project aims to learn a temporal model to predict fu-
ture human motions given past motions and proximity maps
computed from the RGB-D frames of the scene. In partic-
ular, we can use a pre-trained CNN (e.g. ResNet [8]) to
extract feature vectors from the proximity maps, as they’re
images. After that, for each frame, we can append the 3D
joint locations of the person to the proximity feature vector,
and build a network to regress the future 3D joint locations
of the person from the past proximity feature vectors and 3D
joint locations. Due to time constraints, we are only able to
develop a framework to produce the proximity maps but do
not incorporate them into training our temporal models.

In summary, our key contributions are the following:

• We perform data preprocessing and pipelining on
PROX dataset [7] to extract and sequentialize 3D joint
locations.

• We develop a framework to compute proximity maps
from depth maps for PROX.

• We train and evaluate two models, an RNN-based
model and a Transformer-based model, to predict fu-
ture human motion directly from 3D joint locations,
and compare their performances.

2. Related Work
There has been plenty of interest in human motion pre-

diction in real-world scene context. Most of the existing ap-
proaches involve an encoding of the human-scene interac-
tions and a temporal model that predicts future human mo-
tions based on past human motions and encoding of human-
scene interactions. Therefore, we mainly focus on under-
standing of human-scene interactions and human motion
prediction for related work.

2.1. Human-scene Interactions Understanding

Machine perception of human-environment interactions
has been extensively studied. [4] proposes a pairwise body-
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part attention model that detects interactions between ob-
jects and crucial parts of human body. [12] develops a
model that learns 2D-3D joint representation for human-
object interactions. [6] builds a human-centric paradigm for
scene understanding, which allows prediction of potential
human pose and joint locations in a given indoor scene. [11]
presents a model that learns to insert an object instance into
an image using a semantic label map. [16] generates real-
istic human-object interactions by explicitly modeling the
proximity relationship between human and objects.
In our project, we use a proximity map that represents
human-scene interactions with distances between each part
of the human body and the point cloud of the scene. This
is a human-centric representation for scene context that is
simple to compute given a depth image and knowledge of
human joint locations, and has a convenient structure as an
image, suitable for use with CNNs.

2.2. Human Motion Prediction

Human motion prediction has been a long standing prob-
lem. Early work models the motion of pedestrians as if they
would be subject to ‘social forces’, and predict future hu-
man motions using hand-crafted functions [9]. Recent work
propose temporal models, using a recurrent neural network
(RNN), such as an LSTM model in [1], that predicts future
human trajectories. As the importance of scene context and
human-scene interactions has been emphasized, works have
been done to incorporate this information into prediction
tasks. [3] proposes a framework that predicts future human
poses and locations given a single scene image and past 2D
human poses by factorizing the problem into motion goal
prediction, path planning and 3D pose generation, where
scene context is represented by a single RGB image.
We propose to predict future human motions given past
motions and proximity maps computed from the RGB-D
frames of the scene. In comparison to a single scene image,
the information encoded in a proximity map is expected to
be more human-centric, and thus more suitable for tasks of
human motion prediction.

3. Method
3.1. Sequence Prediction

We follow Martinez et al.’s [13] approach and perform
human joint location prediction in a sequence-to-sequence
(seq2seq) manner using two approaches: RNN and trans-
former.

We initially incorrectly try to predict 30 future frames
from 15 input frames, at 3 FPS (predict 10 seconds into the
future from 5 seconds of past observation). This is overly
ambitious which crosses the line between deterministic and
stochastic ambition. The longer time scale of 15 total sec-
onds becomes more a motion generation task. This would

require a different training structure - common approaches
involve GANs (reinforcing realistic motion by a (simultane-
ously trained) real vs fake motion discriminator) and VAE’s
(encoder decoder model where motion is generated from
the encoded latent vector - reinforce reproduction of orig-
inal motion (decoding of latent original sequence), while
incentivising a good distribution in latent vector space).

We later turn switch to predicting 10 frames from 5 at 5
FPS (2 seconds future from 1 second past). In this shorter
time period there’s little room for a human to drastically
change their chain of motion, so a decent prediction can be
achieved.

3.2. Data Preparation

3.2.1 PROX Dataset

We use the PROX dataset [7] which contains 100K frames
at 30 FPS; it’s roughly 50 minutes of footage of human mo-
tion in indoor scenes. PROX has 12 different 3D indoor en-
vironments with 20 subjects moving and interacting inside
- we originally chose it for the ability to compute proxim-
ity maps from depth camera footage with fitted 3D human
joint location, and because the human motion within is very
scene interactive - sitting/lying/rolling around on beds/sofas
etc.

Due to the small number of sequences we can generate
from PROX dataset, we allow a significant overlap between
time sequences. We eventually settle on a frame jump be-
tween the starting frames of consecutive time sequences as
small as 3 frames (at 30FPS this is just 0.1 seconds), giving
around 20,000 training sequences for the 5 input frames 10
output 5FPS = 3 second training sequences.

3.2.2 3D Joint Location Generation

A SMPL-X [14] fitting with shape, pose and global transla-
tion/orientation parameters is provided for each video frame
in PROX with respect to the color coordinate system.

We create a SMPL-X body model and use it to produce
3D joints J as :

J(β) = J
(
T̄ +BS (β;S)

)
, (1)

where T̄ represents the template mesh (vertices in the rest
pose); β represents shape parameters; J represents a sparse
linear regressor that regresses 3D joint locations from mesh
vertices; BS (β;S) = Σ

|β|
n=1βnSn represents the shape

blend shape function with orthonormal principle compo-
nents of vertex displacements capturing shape variations
due to different person identity, S.

We rotate the k-th joints in rest pose θ∗, j̄k, according to
the pose vector θ, and then extract the first 25 3D joints that
represent the major keypoints of the human skeleton, to be
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our joints to predict, j̄′k:

j̄′k = G′
k(θ, J)j̄k, (2)

where G′
k(θ, J) = Gk(θ, J)Gk(θ

∗, J)−1 is the transforma-
tion of that joint out of rest pose into our specific pose θ, via
the kinematic chain.

To ensure consistency of joint locations across all scenes,
we rotate and translate them to the world coordinates using
the scene camera rotation vector R ∈ R3x3 and translation
vector t ∈ R3. Afterwards, for each sequence of input and
future frames, we translate all frames so that the pelvis joint
(the first of our 25 joints) of the first frame, p1, is at the
origin. A 3D joint location vector j̄′k is then normalized to
ĵ′k by:

ĵ′k = Rj̄′k + t− (Rp1 + t) = R(j̄′k − p1) (3)

We should have, but did not, additionally rotated each
skeleton about the axis pointing straight along gravity’s vec-
tor so the first frame skeleton “faces straight north”. How-
ever, in the case where we would additionally employ a se-
quence of proximity maps as auxiliary model input, not ro-
tation normalising is the best - we produce the proximity
map (see 3.2.3) from the depth camera which is static so
has a different view point on the human depending on their
rotation. Rotation normalising joints while being unable to
rotation normalise the proximity maps would lead to a lop-
sided dataset.

There are occasional missing or corrupted frame files,
and also some skeletons with wildly misplaced locations.
For loading our time sequences if one frame has a problem-
atic file, we drop the whole sequence. A better approach
could be to linearly interpolate if it is just a single missing
skeleton.

3.2.3 Proximity Maps Generation

Each PROX video frame provides 512x424 depth images
and 1920x1080 color images along with scene meshes and
camera intrinsics/extrinsics, so we can transform points be-
tween the depth, color and world coordinate systems. To
enhance motion prediction with scene contexts, we calcu-
late proximity maps based on these provided images. Prox-
imity maps are similar to depth images - M ×N 2D arrays
where pixel value at point (i, j), z(xi, yj), is calculated as:

z(xi, yj) = d(p⃗ij , 0) = ||p⃗ij ||; , (4)

where i ∈ |M |, j ∈ |N |, and p⃗ij is the 3D location of
one point (i, j) out of a point cloud of M ×N points, with
position recorded in the coordinate system of the recording
depth camera (position at origin 0). A human proximity
map instead sets:

z(xi, yj) = min
h⃗∈H

||p⃗ij − h⃗||2, (5)

where H = {h⃗i : i = 1, ..., 25} is the set of 25 human 3D
joints in the same coordinate frame. Because many of the
pixel/points of the original depth map are actually collisions
with the human, we set these values to 0 (via a 2D human
mask on the image). Far away pixels for which a point is
not recorded are set to a fixed large value.

A proximity map is easy to calculate given a depth cam-
era and base human joint locations (see figure 1 as an ex-
ample). As an image, it can be encoded effectively with a
CNN. It contains information of nearby objects in the scene
to the human (“scene context”) - think floor beneath their
feet, chair on which they’re sitting, wall on which they’re
leaning, table etc. These are important information that
could inform motion prediction - there might be hard con-
straints such as “they cannot move anymore to the left as
then they’d be penetrating into the table”, and guiding con-
straints like “their arm is close to the table, maybe they’re
moving to lay it down on the table”. This is similar to the
original goal of the PROX dataset - as a single image human
mesh estimation by enforcing no interpenetration between
human and objects, but encouraging close proximity of cer-
tain body parts with scene - bum, upper back legs and so
on.

An idea to enhance this would be to take inverse human
joint distance instead - close by scene points are much more
important. We could keep the setting of human mask to 0.0
so it contrasts well with the nearby scene pixels, or perhaps
introduce the human mask in as a separate color channel,
see figure 2 as an example.

A CNN encoded version of a proximity map could be fed
into our RNN/Transformer as an additional input (concate-
nated with the encoded human joint locations). There would
need to be proper normalisation - i.e. joint locations should
be transformed into the coordinate system of the depth cam-
era (orientation-wise consistency - we can still translate the
joints to have pelvis at origin).

3.3. RNN

Our RNN design is based on Martinez et al. paper [13].
The RNN is a stack of GRU layers which sequentially takes
in an encoded input vector (human joint locations - (25,3),
fed through some FC layers) for each time step. For each
of these inputs it updates its current time step internal state
(representing its derived knowledge of to date motion of the
human), and outputs a timestep t+1 vector which can be
decoded (more FC layers) into a new human joint vector.

This differs from the normal “translation” style encoder-
decoder seq2seq structure in that the the sequence encoder
and decoder are identical with shared weights, and indeed
that the encoder already outputs its own joint predictions,
predicting the next frame of the input sequence. This was a
design choice for simplicity, and even allows additional loss
calculations on the input sequence predictions, not just the
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Figure 1. Example of a proximity map from PROX dataset [7],
distance units in metres.

Figure 2. Inverse proximity map with manually adjusted human
masking - otherwise feet would be distinct. From PROX dataset
[7]

future sequence predictions.
So with an input sequence of t = 1, ..., n frames, frames

t = 1, ..., n − 1 are fed into the encoder RNN, producing
already predictions for t = 2, ..., n. Then the final input
frame n is fed into the (identical) decoder RNN along with
the output internal state from the encoder. The decoder pre-
dicts the next future frame, which is fed back in the desired
number of times for t = n + 1, ..., n + k future frame pre-
dictions. See Figure 3 for a schematic.

The whole predictor has a residual layer from direct hu-
man joint input to output which makes sure that the RNN
can focus on figuring out the joint velocities. Something
we could have tried is putting in the timestep joint position

delta which could be helpful too.

3.3.1 Alternative RNN designs

We give these alternative designs to put ours into context.

• For producing the predicted future frame t+ j, instead
of feeding previous prediction t + j − 1 into the de-
coder, the ground truth frame t + j − 1 can be used.
This approach is used by e.g. Fragkiadaki et al. [5],
adding noise to the ground truth frame to simulate
straying of predicted joint locations off the true path to
aid self correcting of errors in testing/inference where
you really won’t have ground truth future frames. We
additionally tried this approach (without the noise) to
match the Transformer training procedure.

• Despite having the shared sequence encoder-decoder
architecture, Martinez et al. [13] doesn’t actually train
with loss from predicted future input frames (from the
encoder stage). We added this in on advise from Siwei.

• Having a decoupled (weights or additionally structure)
encoder-decoder architecture

3.4. Transformer

We also try a transformer model [15] to predict our
joint sequences. We first apply embedding with 2 fully-
connected layers on the 75 dimensional joints vector to
dmodel = 200 dimensional latent vectors. In order to make
use of the order of the frames, we inject information about
relative/absolute position of the joints in the sequence by
applying positional encoding PE for each of the t-th frame
with i-th dimension as:

PE(t,2i) = sin
(
t/100002i/dmodel

)
PE(t,2i+1) = cos

(
t/100002i/dmodel

)
(6)

We then input the position encoded latent vectors of past
and future frames into a transformer with 8 heads, 6 en-
coder layers, 6 decoder layers and a dropout rate of 0.1.
Finally, we apply 2 fully-connected layers on the predicted
200 dimensional latent vector for the future sequence and
compress it back to 75 dimensions as our predicted joints.
We use a learning rate of 1e − 4 to train the model for 200
epochs.

4. Experiments
4.1. RNN/Transformer Experiments

We lacked a consistent experiment protocol which was
unhelpful. Initially all experiments were done with 15 in-
put frames, 30 future frames at 3 FPS, only later did we
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Figure 3. red dashed lines denote loss calculation - mean euclidean distance across all 25 joints. GRU box is the RNN + pre and post FC
(input/output encoding/decoding). The left blue oblong is the time sequence Encoder portion, the right red oblong is the time sequence
decoder. Here there are 3 input frames and 2 future prediction frames

switch to 5 input frames, 10 future frames at 5 FPS (easier
and more deterministic prediction). Also the Transformer
architecture differs from the final RNN design in that the
transformer always uses ground truth in input and future
frames fed into to be encoded, and so would generally have
much lower training losses (effectively only having to pre-
dict one frame into the future not multiple), as well as for
some reason not utilising residual connection to connect in-
put joints to output joints. We can however compare their
validation losses. Also useful are qualitative comparisons
looking at joint prediction videos.

4.1.1 RNN hyperparameters

We trained for 4 or 8 hours on a NVIDIA RTX 2080 Ti
GPU, but most often optimal validation loss was achieved
after about an hour of training. Depending on the configu-

ration this gave about 50-150 full epochs of training.
We tried about 10−3 : 10−5 learning rate.
The RNN stack is layers of GRU cells - depth allow-

ing more representational complexity. This gave us two
main model structure hyperparameters: number of layers in
RNN, and hidden state size for the layers (convention is to
have the same size of hidden state vector for each layer).
We didn’t actually play with encoding and decoding FC
hyperparams, and mainly varied n_layers=2,3,4 and
hidden_size=256,512

4.1.2 Qualitative Results

1. 15 frames in 30 out 10 second prediction: skeleton
floats off in some direction while slowly contorting un-
naturally

2. 5 frames in 10 out 2 second prediction: skeleton moves
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in the most likely direction according to input motion.
The predicted motions still could not follow the trajec-
tory of the ground truths well, but the predicted trajec-
tories are natural and the human shapes are maintained
well.

One notable failure of prediction is in human walking
- predicted human legs more float in the forward direc-
tion rather than pacing. Walking should be textbook pre-
dictable human motion - we believe our failure may be due
to the PROX dataset having uniquely little “proper” straight
line walking compared to other sliding/sitting/shuffling mo-
tions, and perhaps also the short sequence lengths of train-
ing not providing enough context for walking.

To qualitatively evaluate prediction results on the
train/validation set, we produce 2D and 3D videos of hu-
man meshes/skeleton joints moving about the scene. We
have to convert between the depth, color and world (scene
mesh) coordinate systems.

See https://github.com/BenjiDayan/prox
for visualization of qualitative evaluation on our validation
set.

4.1.3 Quantitative Results

15 ->30 frames 5 ->10 frames
RNN similar as [13] 0.1701 0.0474
Transformer [15] 0.2686 0.0557
Replication Loss 0.1950 0.0584

Table 1. Quantitative evaluation results of our validation set in
MSE.

To perform quantitative evaluation, we reserve all
videos from 9 videos in 2 of the 12 indoor en-
vironments from PROX to be a validation set -
BasementSittingBooth, N3OpenArea, and the
put the rest into training. We set the input and future se-
quence length to 5 and 10 frame jump to 6, and an over-
lapping interval of 11. In total, we have 962 sequences
for validation. Though training loss functions differ, val-
idation loss is just a mean over squared distance error of
joints for each predicted frame, and should be comparable
between models and tasks. We notice that training with
shorter sequences and shorter spanning time (5 frames/1
second in, 10 frames/2 seconds out) largely reduces the
loss. The RNN slightly outperforms the transformer for
both sequence length settings, proving the effectiveness of
the modified loss terms. Additionally that both models’
prediction losses are less than naive replication of the final
frame show that they have learnt something.

5. Conclusion and Future Works

Although we set up the infrastructure to handle the
PROX dataset and produce proximity maps for human in
the scene, due to time constraints we did not achieve our
goal of integrating them as inputs into a predictive model.
Instead we train simpler models with just joint locations as
input. We had difficulties in RNN and Transformer training,
but managed finally to train passable predictive models for
2 second motion prediction.

Future work would incorporate proximity maps and
carefully see how much improvement they could add in dif-
ferent scenarios. Comparisons could be made in different
types of human motion, with more or less scene context in-
volvement.

For producing proximity maps we use the depth images
(as described in 3.2.3) although it would have been possible
to artificially create a proximity map with a simulated cam-
era given that we have a full mesh of each scene - this would
have the advantage of being able to pick the viewpoint onto
the human, as well as being able to overcome occlusion.

To incorporate proximity maps into training, future
works could consider applying transfer learning on pre-
trained vision transformers [10] or video vision transform-
ers [2] to our joint location prediction task. Splitting prox-
imity maps into frames and encoding them as sequences in a
spatio-temporal manner could potentially incorporate more
temporal scene context to help decode more accurate joint
location predictions. Furthermore figuring out how to relate
the flat 2D viewpoint of the proximity map to the human
body’s rotation with respect to the depth camera is impor-
tant.

A much further away overall end goal is general predic-
tion in video - something similar to the success that large
language models have had in predicting future text. Mod-
elling the motion of one human skeleton within an indoor
scene context is a very specific example of this more gen-
eral problem. Does explicit human body modelling have
a place in a general framework, along with auxiliary data
like human proximity maps? What structure of predictive
model could make this work - RNN, Transformer or some-
thing else? And what corpus of training data?

Our main takeaways from the project have however been
mostly self-educational - insights into RNN and Trans-
former design, as well as lessons in the complexities of
building machine learning systems in this area.

6. Contributions of team members

• Data Pipelining/Preprocessing: Benjamin

• Proximity Map generation: Di, Benjamin

• RNN design/training: Benjamin
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• Transformer design/training: Xiyi

• Visualisation Tools: Benjamin, Di, Xiyi
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