
Towards Robust 3D Body Mesh Inference of Partially-observed Humans

Xiyi Chen
ETH Zürich
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Abstract

With the development of unified body models for ex-
pressive representations of pose, shape, and facial expres-
sions of human, previous works have achieved robust and
occlusion-aware 3D body mesh inference on human images.
However, existing methods only focus on fully-observed hu-
man captures. It is unclear if their robustness could remain
under partially-observed settings where parts of the body
are out of the frame, which could be common for video
captures and images from the social media. In this work,
we follow the optimization-regression hybrid manner and
extensively investigate the effectiveness of various modifi-
cations to the optimization pipeline using predictions from
regression-based methods. Starting from the SMPLify-X
pipeline, we make several important modifications to im-
prove its robustness under partially-observed settings: key-
point blending with confidence calibration, thresholding on
confidence values, and adopting a stronger body prior pose
from the predictions of regression methods. We test our ap-
proach as well as the state-of-the-art methods on the upper-
body crops of a benchmark dataset with pseudo ground-
truth 3D mesh. Qualitative and quantitative results show
that our method outperforms all existing methods with re-
spect to the main body and entire observed mesh, although
it comes with a slight compromise on face inference accu-
racy. Our implementation is modified based on SMPLify-
X and is publicly available at https://github.com/
xiyichen/smplify-x-partial.

1. Introduction
Human pose estimation is a key topic in computer vision
that estimates the joint representation of human body pose
from an input human image. Previous works have achieved
decent accuracy on real-time pose estimation for both 2D
[3, 4, 8, 14] and 3D [6, 15, 29] representations. However,
only modeling the body skeletons could be insufficient to
understand human behaviors. With the help of unified, para-
metric body models [17, 27, 28, 36], recent works start to
tackle the more challenging 3D body mesh inference prob-

Figure 1. An example of optimization-based methods’ inability to
fit accurate 3D mesh on partially-observed human images. Left: a
partially-observed input from upper-body crops on the benchmark
EHF dataset [28]. Right: SMPLify-X fitting results.

lem which reconstructs the body structure in a more holis-
tic and expressive way. These methods could be classi-
fied into 3 categories: regression-based methods [5, 9, 19,
22, 32] and optimization-based methods [1, 28, 35], and
optimization-regression hybrids [18, 23, 24]. Given a hu-
man capture, these methods could optimize or infer body
model parameters for an accurate body mesh that aligns
well with the human’s pose, shape, and facial expressions.

Although existing mesh inference methods can per-
form robustly on fully-observed human images, some are
even occlusion-aware [22], their performances have not
been evaluated under partially-observed settings where cer-
tain parts of the body are out of the frame, which could
be common for user inputs. To evaluate the perfor-
mance under such settings, we test the existing methods
on upper-body crops of the benchmark EHF dataset [28]
using strict vertex-to-vertex error with Procrustes Align-
ment. We observe both quantitatively and qualitatively
that optimization-based methods completely fail to fit ac-
curate meshes due to their reliance on accurate keypoint de-
tection. With important keypoints missing, corresponding
body parts could be fitted to random positions, as shown in
Figure 1. Some regression-based methods are able to main-
tain the robustness on the main body pose, but have prob-
lems fitting partially-observed hands and limbs accurately.

In this work, we aim to extensively investigate the ef-
fectiveness of various modifications to the state-of-the-art
optimization pipeline [28] to improve its robustness under
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partially-observed settings. As suggested in [5, 21], op-
timization and regression can form a strong collaboration
by initializing the optimization pipeline with predictions
from regression networks. Starting with the SMPLify-X
[28] pipeline, we make several new contributions: 1) per-
form keypoints blending with confidence calibration using
heuristic statistics from a fully-observed person dataset to
improve the accuracy of 2D body joints, and set a thresh-
old empirically to ignore the potentially incorrect keypoints
2) adopt combined body prior poses from the combination
of predictions of 2 regression-based methods 3) modify the
optimization objective for the body pose prior and penal-
ize the whole body pose towards the combined prior, and
fine-tune the optimization weights accordingly. Quantita-
tive and qualitative results show that our method outper-
forms the state-of-the-art methods in terms of the main body
reconstruction of the observed areas, although it is slightly
compromised on reconstruction at the face and hands re-
gions. We believe our work is one of the first steps towards
more robust 3D body mesh inference of partially-observed
humans.

2. Related Works
2.1. From Pose Estimation to 3D Mesh Inference

Human pose estimation is a key topic in computer vision
with wide applications in human-computer interaction, au-
tonomous driving, video surveillance, bio-mechanics and
medication, etc. [34]. It involves estimating the joint rep-
resentation of human body pose in 2D or 3D space from
an input 2D RGB human image. With the help of deep
learning, earlier works have achieved decent accuracy and
real-time inference on holistic keypoint detections for body,
hands and face in both 2D [3, 4, 8, 14] and 3D [6, 15, 29]
space. However, joint representation only gives a rough
skeleton of the body and ignores the body shape or facial
expressions of the person. While studying human behav-
iors, people are not only interested in the body pose but
also their feelings, appearances, and interactions with the
environments. Therefore, the skeleton representations are
insufficient and the community moves forward for more ex-
pressive representations by reconstructing the 3D mesh that
contains pose, shape, and facial expressions from the input
human image.

2.2. Unified Body Modeling

To allow more expressive representations of human bodies,
unified models that combine accurate modeling on body,
hands, and face are first developed. These models either
model the entire body parametrically or combine multiple
models for different parts of the body. SMPL [27] holis-
tically models shape and pose parameters that could accu-
rately represents a wide variety of body shapes in natural

human poses, using a rest pose template, blend weights,
pose and identity dependent blend shapes, and a regressor
from vertices to joint locations. Despite producing accu-
rate body pose, SMPL has limited expressiveness for hands
and face. In an attempt to track body, face, and hands si-
multaneously, later works builds on or extend SMPL. The
Adam model [17] combines SMPL for body, an artist-
created rig for hands, and the FaceWarehouse [2] model for
face. SMPL+H [31] combines SMPL for body and a 3D
hand model. SMPL-X [28] extends on SMPL with fully ar-
ticulated hands from MANO [31] and expressive face from
FLAME [25]. GHUM(L) [36], on the other hand, achieves
a small but expressive parameterization of human with non-
linear shape and facial expression spaces based on vari-
ational autoencoders (VAE) [20], pose-space deformation
correctives, skeleton joint center predictors, and blend skin-
ning functions.

2.3. Body Mesh Inference

With accurate pre-trained unified body models, methods are
developed to holistically infer parameters that define a 3D
body model from an input RGB image. These methods
are categoried as regression-based, optimization-based, and
optimization-regression hybrids.

2.3.1 Regression-based Methods

Regression-based methods approaches the mesh inference
task by predicting body model parameters and camera pa-
rameters (usually weak-perspective) through deep learning.
Once trained on large-scale datasets, these methods gener-
alize well and are very efficient for inference. HMR [19]
gives a canonical example on human mesh recovery. It de-
velops an iterative regression module that infers mesh pa-
rameters directly from image features with feedbacks from
a discriminator that acts as weak supervision. The SMPL
based, occlusion-aware PARE [22] uses a part-guided atten-
tion mechanism to exploit information about the visibility
of individual body parts and leverage the information from
neighboring body parts to predict parts with occlusions. The
SMPL-X based ExPose [5] and FrankMocap [32] develop
sub-networks for hands, face, and body and merge them to
form the entire mesh. PIXIE [9] builds on ExPose’s body-
driven attention and sub-networks approach, but it evaluates
the confidences of each sub-networks and fuses body/face
and body/hand features by weighting the confidences.

2.3.2 Optimization-based Methods

Optimization-based methods minimize an objective that
contains a 2D keypoint constraint term to fit the body model
towards the keypoint detections, prior terms on compo-
nent parameters to prevent pose, shape, and facial expres-
sions from deviating too much from the templates, and



other relevant loss terms, balanced with tunable optimiza-
tion weights. SMPLify [1] is the first method to estimate
both pose and shape from a single human image. Based
on SMPL, it fits SMPL pose and shape parameters to 2D
body keypoints detected by DeepCut [14]. SMPLify-X [28]
fits the more expressive SMPL-X body model to the image
and make several significant improvements over SMPLify,
including a VAE based pose prior, a more accurate inter-
penetration penalty, and a gender detector. It also replaces
DeepCut with OpenPose [3] for more accurate keypoint de-
tections. MTC [35] proposes an optimization pipeline to fit
a deformable human model on 3D Part Orientation Fields
and 2D keypoint measurements for total body pose estima-
tion based on Adam model [17] and OpenPose. Although
optimization-based methods are robust and accurate when
keypoint detections are reliable, the optimization process is
generally slow, which makes it difficult to apply them to
large-scale datasets.

2.3.3 Optimization-Regression Hybrids

Other works combine regression and optimization collab-
oratively. ProHMR [24] builds on HMR and regresses a
distribution of poses which can then be used as a prior term
for a fitting process. SPIN [23] predicts SMPL parameters
from a CNN-based deep network and iteratively fit the re-
gressed mesh to OpenPose-detected 2D keypoints for more
accurate meshes. The optimized fittings can meanwhile act
as a strong supervision for the network. EFT [18] builds on
SPIN and HMR and updates the networks weights during
fitting. It is also suggested in [5] and [21] that initializing
SMPLify(-X) with predicted body pose and camera param-
eters from predictions of regression methods could produce
more accurate fittings with potentially faster convergence.
Our approach follows the hybrid manner to initialize the
SMPLify-X pipeline with prediction results from ExPose
and PIXIE, and achieve more accurate fittings with faster
convergence.

2.3.4 Partially-observed Settings

All of the aforementioned methods only target on the ro-
bustness when the human captures are fully-observed. None
of them have been extended to settings where part of the
bodies are invisible. Such partial observations could be
common for video captures and images from the social
media. It is yet unclear how well the existing methods
could perform under such settings quantitatively and quali-
tatively. [30] proposes a self-training framework that adapts
3D mesh inference systems to consumer videos with un-
usual camera viewpoints and aggressive truncations. How-
ever, their main goal is to get the full-body awareness of
the truncations rather than reconstructing the visible parts as
accurately as possible, and the quantitative evaluations are

only done by human judgements. Therefore, it is necessary
to develop new approaches or modify the existing ones for
partially-observed settings, and to evaluate the robustness
of existing methods under such settings. Due to the lack of
suitable training dataset for partially-observed 3D human
mesh inference, it could be challenging to adapt regression
methods to such settings. Optimization-based methods,
however, have the potential to be adapted by modifying the
pipeline to resolve the limitations on partial observations.
We modify the SMPLify-X optimization scheme and inte-
grate information from the predictions of regression-based
methods. In addition, we perform upper-body cropping on
the benchmark EHF dataset and demonstrate through quan-
titative and qualitative evaluations that our method outper-
form the existing methods on the main body and the whole
mesh.

3. Methods
3.1. Keypoints Blending and Thresholding

Figure 2. An example of our keypoints blending. Left: OpenPose
BODY 25 format model [3] detections. Middle: MMPose Halpe
format model [7, 8, 26] detections. Right: blending results.

The performance of optimization based methods are
highly sensitive to the accuracy of keypoints detection. Any
missing keypoints, especially the keypoints to define the
body skeleton, could substantially harm the accuracy of
mesh inference. Therefore, we attempt to blend results
of multiple keypoint detection methods, considering dif-
ferent models could be better at detecting different parts
of the body. However, the major challenge of this blend-
ing procedure is that confidence scores are defined differ-
ently for different detection methods. To tackle this prob-
lem, we need to know how confident the detection meth-
ods usually are within a large-scale human dataset of var-
ious poses and facial expressions. Therefore, we first run
these methods on the SHHQ dataset [10] with 40,000 im-
ages, a fully-observed human dataset for fashion poses, to
get heuristics on the statistical features of the confidence
score for each keypoint. We then perform standardization
on the confidence scores using the learned statistical fea-
tures to calibrate the confidence scores of all methods to-
wards one. For each keypoint, we select the detection with
the highest calibrated score. We find it the most beneficial
to blend results from two detection models: 1) BODY 25



format model from OpenPose [3] and 2) Halpe full-body
format [8, 26] model from MMPose [7] trained on HRNet
[33] with DarkPose [37]. Blending is performed only on
hand and body keypoints, as we observe that blending face
keypoints could sometimes break the face contours and lead
to a performance loss (more about this is explained in Sec-
tion 4.4).

In addition, we observe that some detection methods
tend to give incorrect keypoint detections with relatively
lower confidence scores. To prevent from optimizing the
mesh towards these keypoints, we apply thresholds on con-
fidence scores to ignore them. The thresholds are only ap-
plied to the body keypoints since we observe that keypoints
with low confidences for face and hands could still be ben-
eficial. We empirically select the threshold as 0.2 for Open-
Pose and 0.5 for the MMPose Halpe format model.

While the keypoints detection accuracy is worse with
OpenPose, we find that its confidence scores are more dis-
crimitive and could be better differentiated with a threshold.
Therefore, we perform standardization on the results of the
the MMPose Halpe format model and de-standardize them
to align them with OpenPose’s confidences. For each confi-
dence score ci of a keypoint detected by the MMPose Halpe
format model, its calibrated confidence c′i is:

c′i = clip(
ci − µi,MMPose

σi,MMPose
∗ σi,OpenPose + µi,OpenPose), (1)

where µi and σi are heuristic per-keypoint statistics calcu-
lated on the SHHQ dataset, and clip() clips the calibrated
value into a probability range [0, 1]. The blended keypoints
follows the BODY 25 format, containing 135 keypoints (25
body keypoints shared by both methods, 21 keypoints for
each hand, and 68 keypoints for face) for each human im-
age. Figure 2 shows an example of our blending procedure.
The blended results improves upon the results of both of the
detectors: adding missing keypoints to OpenPose detections
and thresholding incorrect ones from MMPose successfully.

3.2. Combined Body Pose Prior

The missing keypoints of the observed region usually cause
SMPLify-X to fit the corresponding body parts to random
poses and positions if the neutral pose is used as the pose
prior. One potential solution is to adopt a stronger body
pose prior to replace the neutral pose. We observe that
regression methods could give more accurate fittings on
partially-observed human images even for the unobserved
parts. In total, 7 methods that regress body model parame-
ters are tested: PARE [22], SPIN [23], ProHMR [24], EFT
[18], FrankMocap [32], ExPose [5] and PIXIE [9]. We
find that EFT, PARE, PIXIE, and ExPose provide compa-
rably robust inferences on the body pose under partially-
observed settings, while the results for SPIN, FrankMocap,
and ProHMR are relatively worse. Quantitatively, ExPose

produces the most accurate inference on main body and
face. PIXIE, on the other hand, produces one of the most ac-
curate hand and wrist poses, while being robust for all other
body parts (see Table 1). Therefore, we build a combined
body pose prior θbR with the first 19 joints from ExPose and
last 2 wrist joints from PIXIE.

To improve the speed of convergence and accuracy, we
initialize the SMPL-X model with global orientation G from
its prediction with ExPose and body pose θb with θbR .

3.3. Camera Optimization

The first step of the SMPLify-X optimization pipeline is to
estimate the camera parameters to project the SMPL-X 3D
joints and vertices into 2D space. We follow [21] to initial-
ize the focal length and the camera translation vector with
more accurate approximations. For a point [x, y, z], its 3D-
2D projection ΠK is computed as

[x̃, ỹ, z̃]T = ΠK([x, y, z]) = K · ([x, y, z] + T )T , (2)

where K = f 0 Cx

0 f Cy

0 0 0

 (3)

is the intrinsic matrix for an input image of size W × H
with bounding box (predicted by RCNN-like networks [12]
as a part of the regression methods) of the detected human
centered at [Cx, Cy], f is the focal length and is approxi-
mated as f ≈

√
W 2 +H2, and T is the learnable transla-

tion parameters. The projected 2D point is then normalized
as [x̃/z̃, ỹ/z̃].

We extract the weak-perspective camera parameters
[s, tx, ty] predicted by the regression method, and initialize
T as T0 = [tx, ty,

2·f
s·b ], where b is the size of the bounding

box.
We also include all keypoints in the upper-body joints

(hip joints and above, excluding wrist keypoints) into opti-
mization and incorporate corresponding confidence values.
The overall objective for camera initialization is:

E(T,G) = ||(Rθ(Ju)−Jest,u)⊙ω≥τ
u ||22+λT ||Tz−T0z ||22,

(4)
where Rθ(·) is a function that transforms the joints along
the kinematic tree according to the pose θ, Ju denotes the
upper-body joints of the current SMPL-X model before
transformation, element-wisely multiplied with correspond-
ing confidence scores ω≥τ

u (with the ones below the thresh-
old τ set to 0), and Jest,u denotes their pseudo ground-
truth keypoint detections. λT represents the regularization
weight for the depth parameter in the translation vector.

3.4. Full Model Optimization

The second step of the pipeline is to optimize the full body
model. The overall objective of the optimization pipeline



Figure 3. An example of erroneous arm pose after reconstruc-
tion with VPoser. Left: pose prediction from regression methods.
Right: reconstruction with VPoser.

that optimizes SMPL-X shape parameters β, pose param-
eters θ, and facial expression parameters ψ follows that of
SMPLify-X:

E(β, θ, ψ) = EJ + λθbEθb + λθfEθf + λmh
Emh

+

λαEα + λβEβ + λεEε + λCEC , (5)

The data term EJ is defined as EJ(β, θ,K, Jest) =∑
joint i

γiω
≥τi
i ρ(ΠK(Rθ(J(β))i − Jest,i), (6)

where γi denotes the per-joint weight, ω≥τi
i denotes the per-

joint confidence (set to 0 if below its corresponding thresh-
old τi). Note that τi = 1 for ∀ i ∈ {Jface, Jhands} since no
thresholding is applied to face and hands. ρ denotes a robust
Geman-McClure error function [11].

The terms Eθf , Emh
, Eβ , Eε are simple L2 priors for

facial pose, hand pose, body shape, and facial expressions,
penalized towards their neutral states. We leave them un-
modified instead of penalizing them towards regression pre-
dictions because 1) these predictions are sometimes inac-
curate and could thus mislead the optimization process; 2)
these parts are easier to be optimized than the body pose
since they are less susceptible to the missing keypoints of
unobserved body parts. Eα(θb) is the angle prior that pe-
nalizes extreme bendings for elbows and knees, and EC is
the interpenetration penalty as in SMPLify-X on a list of
self-colliding triangles of the body parts that are physically
impossible.
Eθb represents the body pose prior. In SMPLify-X, a

Variational Human Body Pose Prior (VPoser) is proposed
and Eθb is defined as a L2 prior that penalizes its latent
spaceZ ∈ R32 towards the mean. Although this term works
well in the original pipeline when penalized towards the
neutral pose, we find that the reconstruction error of VPoser
is considerable when applied to pose priors from regression-
based methods. Especially, the arm and hand poses could
become erroneous when we encode a pose prior and de-
code it back, as shown in Figure 3. Although this could

be corrected if the body pose is penalized towards the neu-
tral pose, we need to penalize the latent vector towards the
latent representation of the predicted body pose from the re-
gression methods to guide the optimization process for un-
observed parts. In such cases, the incorrectly reconstructed
poses are sometimes unable to be corrected and thus could
lead to undesirable fitting results. Therefore, we remove the
usage of VPoser and directly regularize the 21-joint pose
parameter θb as:

Eθb = ||θb − θbR ||22 (7)

Since the body poses are initialized with and penalized
towards more accurate priors, we find that it is now enough
to only perform 3 stages of optimization instead of 5 as in
the original pipeline, which reduces the run-time by about
half. In the first stage, our pipeline aligns the initialized
body model more closely with the 2D keypoints. In the
next 2 stages, it gradually fits the face and hands. We start
with the released optimization weights of the last 3 stages of
SMPLify-X with an annealing scheme for λ and apply sev-
eral changes to λθb , λθf , and λβ on each stage. The entire
set of modified weights is released with our implementa-
tion.

4. Experiments
4.1. Cropped EHF Dataset

To evaluate our modified modification pipeline quantita-
tively, we prepare a partially-observed human dataset with
pseudo ground truth 3D mesh scans by cropping the 100
fully-observed human images from the benchmark EHF
dataset experimented in [28]. For each image with detected
keypoints in BODY 25 format, we center the bounding box
at the neck keypoint for x-axis, and the mid-point between
the highest keypoint (with smallest y axis) and the mid-hip
keypoint for y-axis. We then crop a 800 × 600 area around
the center, which roughly crops the upper body.

Since we are mostly interested in how accurate the mesh
reconstruction is within the observed area, we use the
ground-truth camera parameters of EHF to project all ver-
tices of the pseudo ground truth 3D mesh into 2D space. We
then record the indices of vertices within the boundary for
each ground-truth mesh and subset vertices with the same
indices from our fitting results.

4.2. Evaluation Metrics

4.2.1 Mesh Alignment

To align a fitted 3D mesh with the ground truth, Procrustes
Alignment [13] is performed to solve for scale, rotation, and
translation. When reporting the errors for different parts of
the mesh (whole observed mesh, body, face, and left/right
hands), we align them separately.



4.2.2 Mean Per-Joint Position Error (MPJPE)

We first report the mean Euclidean distance between the
joints of the fitted mesh and the ground truth, and denote
this as PA-MPJPE with Procrustes Alignment. Since the
EHF dataset only provides vertices of the ground truth 3D
mesh, we use a linear regressor to predict the 14 LSP-
common [16] joints from the ground-truth vertices as in
[5], [9], and [22], and do the same on the fitted vertices
of our modified optimization pipeline and methods to com-
pare. Although a common metric, MPJPE could not capture
the error of the entire 3D mesh well due to the sparseness
of body joints.

4.2.3 Vertex-to-vertex Error (V2V):

V2V error computes the mean Euclidean distance for all
pairs of vertices. It is stricter than MPJPE since it also cap-
tures 3D shape errors and unnatural limb rotations. Note
that aligning a SMPL based mesh with a SMPL-X based
one is only supported for the main body part where SMPL
and SMPL-X share the same topology, and it is done by
matching a subset of 4410 vertices of the body part shared
by both types of models.

4.3. Quantitative and Qualitative Evaluation

Figure 4. Heatmaps of per-vertex PA-V2V errors averaged on all
100 images in the cropped EHF dataset. Left: PIXIE, Middle: Ex-
Pose, Right: ours. The gray parts denote body parts that are never
observed in any image. The errors reported are calculated by per-
forming Procrustes Alignment using the entire observed meshes.

Quantitative evaluation is performed on our upper-body
crops of the EHF dataset to compare our method with state-
of-the-art methods, and the numerical scores can be seen
in Table 1. FrankMocap produces one of the most accu-
rate hand models when aligned separately, but its body pose
predictions are not very accurate. PIXIE also produces ac-
curate hand meshes while being overall robust for all other
body parts, producing the smallest error on the entire ob-
served mesh among all existing methods. Expose produces
the smallest errors on body vertices and joints, verifying
that it is the most robust method in terms of body pose pre-
diction. Meanwhile, its face inference is also the most ac-
curate among all methods. However, it produces an overall

error 1.76 mm higher than PIXIE, mainly caused by the in-
accurate wrist poses.

Figure 5. Qualitative evaluation of the 3 best-performing regres-
sion methods and our method on the cropped EHF dataset. From
left to right: (1) input image, (2) PARE, (3) PIXIE, (4) ExPose,
(5) ours. Note that camera projections for the regression meth-
ods are only a rough approximation based on the predicted weak-
perspective camera parameters.

Figure 6. Qualitative evaluation on some screenshots of partially-
observed person in Star Trek: The Next Generation. From left to
right: (1) input image, (2) PIXIE, (3) ExPose, (4) ours. ExPose
model is trained with the neutral shape spaces and could only pro-
duce gender neutral body models.

Taking advantages of both ExPose and PIXIE, our
method produces the most accurate fitting with respect to
the body pose and the entire observed mesh. Although we
integrate hand poses from PIXIE, our hands fittings still



Method Type Body Model Time (s) PA-V2V (mm) ↓ PA-MPJPE (mm) ↓
All Body Face L/R Hand 14 Body Joints

SMPLify-X’ [28] O SMPL-X 40-60 56.39 68.77 6.25 12.67/13.17 78.56
SMPLify-X [28] O SMPL-X 40-60 68.71 82.17 8.76 12.54/13.73 98.71
SPIN [23] H SMPL <1 N/A 60.46 N/A N/A 74.34
ProHMR [24] H SMPL <1 N/A 52.10 N/A N/A 60.69
EFT [18] H SMPL <1 N/A 43.41 N/A N/A 55.16
PARE [22] R SMPL <1 N/A 40.33 N/A N/A 49.15
FrankMocap [32] R SMPL-X <1 54.59 53.02 5.50 10.69/11.79 66.61
PIXIE [9] R SMPL-X <1 37.56 43.16 5.29 11.25/10.58 49.58
ExPose [5] R SMPL-X <1 39.08 39.76 5.13 12.85/12.71 45.78
Ours H SMPL-X 10-30 32.78 38.03 7.03 12.23/12.76 42.26

Table 1. Quantitative evaluation results on the 100 images in the cropped EHF dataset. Our method outperforms the state of the art
regression methods w.r.t main body and the whole 3D mesh, and reduces the runtime by about half compared to the original SMPLify-
X pipeline, but is slightly worse w.r.t face and hand performance. Note that SMPLify-X’ uses the ground-truth focal length and is not
directly comparable with other methods. All error scores are recorded only on the observed parts of the images. “O/R/H” denotes
Optimization/Regression/Hybrid.

come out less accurate when aligned separately with the
ground truths, caused by errors in keypoint detections. We
observe that keypoint detectors are the least robust in case of
low degree of observation, extreme or unnatural hand poses,
and when hands overlap with other body parts. In such sce-
narios, all keypoint detectors we have experimented with
tend to make similar mistakes by ignoring important key-
points, hence this problem could still not be solved with
keypoint blending. On the other hand, our method also pro-
duces underfitted face meshes, producing an even higher
error in terms of face PA-V2V compared to the original
SMPLify-X method with ground-truth focal length. We be-
lieve this is a compromise when we replace the latent rep-
resentation of body pose using VPoser with the actual body
pose vector whose size is about twice as big (more of this is
discussed in Section 4.4.3).

Figure 4 shows, when aligning the whole meshes with
the ground truths, the error distributions of all vertices fitted
by the 3 best-performing methods that are based on SMPL-
X body models, averaged on all 100 images in the cropped
EHF dataset. It can be seen that PIXIE has the highest er-
rors in the main body part, especially at the stomach and
hips areas. ExPose performs better on the main body, but
produces larger errors on hands. Our method is on par with
ExPose in terms of the body, while slightly improved on
hips, necks, head poses and hand/wrist poses.

In addition, we show some qualitative results on the
cropped EHF dataset as well as some partially-observed hu-
man captures on the internet in Figure 5 and 6. Regarding
body poses, the predictions with PARE and PIXIE tend to
fit the partially-observed limbs inaccurately, bended instead
of neutralized when some important keypoints are missing.
ExPose gives the most robust body pose predictions, but

less accurate wrist poses and hand inference compared to
PIXIE. In some cases when hands are only partially visible,
ExPose fits them as unnatural poses or even twisted/flipped
from front to back (see image 1 and 3 in Figure 6). Our
method, optimized on the combined prior, slightly improves
the accuracy of body pose prediction from ExPose, and
fuses the more accurate wrist and hand poses from PIXIE.

4.4. Ablation Studies

Version
PA-V2V (mm) ↓

All Body Face L/R Hand

Ours 32.78 38.03 7.03 12.23/12.76
Keypoints Blending:
Blend face keypoints +0.72 +0.48 +0.06 +0.02/+0.04
Blend body only +1.12 +0.89 -0.03 +0.20/-0.24
OpenPose only +1.53 +0.68 -0.22 -0.03/-0.23
MMPose only +2.79 +3.13 +0.90 +1.95/+2.07
Aligned to MMPose +1.17 +2.64 +0.03 +1.39/+1.59
Thresholding:
Without threshold +0.85 +0.89 ±0.00 -0.04/-0.10
Threshold on hands +0.09 +0.22 -0.01 +0.08/+0.06
Threshold on face +0.59 +0.90 ±0.00 +0.36/-0.03
Body Pose Prior:
PARE body pose +3.33 +2.17 +0.29 +1.85/+1.60
PIXIE body pose +0.85 +0.93 -0.22 -0.43/-0.30
ExPose body pose +2.76 +1.18 +0.05 -0.12/+1.10
Use VPoser +11.07 +11.12 -0.56 +0.76/+1.13

Table 2. Ablation studies on cropped EHF dataset using the stricter
PA-V2V metric.

Next, we perform ablation studies by modifying one of
the components of our proposed method. Table 2 compares



each of the modifications with our proposed version using
the stricter PA-V2V metric.

4.4.1 Keypoints Blending

We change the blending procedure in two ways: compo-
nents to blend and calibration target of confidence scores.
Not blending at all, i.e., only using OpenPose or MMPose
results, increases the error with respect to main body and
overall mesh, although using only OpenPose keypoints pro-
duces slightly better face and hands inference. Blending
face keypoints could mix up the contours of different de-
tectors since the keypoints are too close to each other and
result in inaccurate face shapes. Excluding hand keypoints
from blending would also lead to slightly higher errors since
OpenPose cannot always detect hands accurately. When we
calibrate the confidence scores towards MMPose instead of
OpenPose, the errors also increase, but not as much as us-
ing MMPose keypoints only. It verifies our observation that
OpenPose confidence scores are more discriminative. Over-
all, these results prove that keypoints blending is the most
beneficial when blending the body and hand keypoints and
calibrate confidence scores towards OpenPose.

4.4.2 Thresholding

Using threshold provides a 0.8+ mm performance gain with
respect to main body and whole mesh. However, adding
threshold to hands and faces leads to slightly higher errors.
Therefore, thresholding is the most beneficial when applied
only on the body keypoints.

4.4.3 Body Pose Prior

We replace our combined pose prior with solely using
body poses from PARE, PIXIE, and ExPose, the 3 best-
performing methods in terms of body pose. We observe
that using any of them increases the error of the body mesh.
Although only using PIXIE poses gives the best inference
performance on hands, there’s a greater performance loss
on the main body and whole 3D mesh.

We also test the performance of using VPoser as our
body pose prior as in the original SMPLify-X pipeline.
Since the dimension of the pose vector is changed, we
modify the corresponding optimization weights λθb accord-
ingly. As described in Section 3.4, the reconstruction loss
of VPoser is sometimes considerable, leading to incorrect
decoded poses, especially with respect to arms and hands.
Although we try to mitigate this issue by penalizing the
latent body pose representation towards the mean in the
first 2 stage and towards the encoded prior pose only in
the last stage, the fitted arm poses could still sometimes
be twisted undesirably. Quantitatively, using VPoser pro-
duces the largest errors with respect to main body and whole

mesh. However, it is worth noticing that the face inference
is the most accurate when using VPoser, since it’s easier to
fit the body pose as the latent space is about half the size
of the full body pose space. Even if we try to modify opti-
mization weights for the body pose prior λθb and facial pose
prior λθf , as well as face joint weights γface, our proposed
version still comes with a compromise with respect to face
inference accuracy.

5. Conclusion

In this work, we propose several modifications to the
SMPLify-X [28] optimization pipeline to make it more ro-
bust under partially-observed settings, including keypoints
blending with confidence calibration, thresholding on con-
fidence values, initializing the camera parameters and body
pose with results of regression-based methods, and replac-
ing the pose prior on latent representation with the actual
pose space, penalized towards the combined body pose
prior. Qualitative and quantitative evaluation results on
the upper-body crops of the benchmark EHF dataset with
ground-truth 3D mesh show that the fitting results of our
proposed new pipeline are more accurate than state-of-the-
art methods in terms of the main body and the entire mesh.
Ablation studies show that our proposed version has the best
overall performance, although it comes with a slight com-
promise with the performance of face mesh inference.

6. Future Works

To extensively evaluate the robustness of our method and
existing methods under partially-observed settings, a larger,
preferably in-the-wild dataset with pseudo ground truth 3D
meshes will be needed. A potential one to use is the EgoB-
ody dataset [38]. Although captured indoors, its first-person
views in 125 sequences provide a wide variety of motions
and facial expressions for research on partially-observed
body mesh inference. Evaluation could be performed on
different degrees of observation to test how the robustness
is effected by the visibility of the body.

In addition, since SMPLify-X optimizes for the body
shape only with respect to the keypoint locations, it could
only give a rough approximation of the body shape. Future
works could potentially incorporate silhouette into the ob-
jective and/or incorporate inverse rendering as part of the
optimization scheme.
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