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Introduction



Body modeling

Pavlakos et al.,
SMPLify-X, CVPR 2019

)
https:/www.gettyimages.com/
search/stack/546047069#
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Body mesh inference

Optimization-based methods

E(,B, 0, ¢) = E;+ )\nggb -+ )\nggf + /\thmh+ AaFEo + )‘BEﬂ + AeFBe + AeEe
Pavlakos et al., SMPLify-X, CVPR 2019
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Body mesh inference

Optimization-regression hybrids
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Partially-observed settings

Predictions classified as “Good”, identified by human Rockwell et al., ECCV 2020
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Partially-observed settings

We could start with optimization-based methods like SMPLify-X, but ...
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Main contributions

1) Perform keypoints blending with confidence calibration using heuristic
statistics from a fully-observed person dataset to improve the accuracy of
2D body joints, and set a threshold empirically to ignore the potentially
iIncorrect keypoints

2) Adopt combined body prior poses from predictions of 2 regression-based
methods; initialize global orientation and camera parameters with ExPose

predictions

3) Modify the optimization objective for the body pose prior and penalize the
whole body pose towards the combined prior, and fine-tune the optimization

weights accordingly
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Methods



Keypoints blending and thresholding

OpenPose BODY_ 25 format
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Keypoints blending and thresholding

s
25

use per-keypoint statistics of 40,000 fully-observed human images with various
fashion poses in the SHHQ dataset (Fu et al., ECCV 2022)
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Keypoints blending and thresholding, visualization

OpenPose MMPose
ETHziirich (thr=0.2) (thr=0.5)

Blended
(thr=0.2)
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Combined pose prior

Input image
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ExPose
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Combined pose prior

ExPose: the most accurate body pose predictions, but wrist poses are sometimes wrong.
PIXIE: more accurate wrist and hand poses
Therefore, we build a combined pose prior:

HbR = ebE:cPosc [: 19] Uy ebPIXIE [19 :]
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Camera optimization

2,9,2" =k([z,y,2]) = K - ([z,9,2] + T)"

SMPLIify-X starts with the default global orientation and initializes the depth parameter in the
translation vector according to shoulder and hip keypoints. However, this is inaccurate and
could be especially problematic when these keypoints are missing.

input image OpenPose detections SMPLify-X, after camera optimization
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Camera optimization

We follow Kissos et al. [1], and initialize the camera matrix and parameters as:
bounding box center [Cx, Cy]

- weak-perspective camera parametersJs, tx, ty],
f O C’m predicted by ExPose
K=|0 f C, frRVW2+H?2 Ty =[t,,t,, Sé]
O O O area of bounding

- box b

We also include all upper-body keypoints and incorporate their corresponding confidence
values. The overall camera optimization objective is:

E(T,G) = ||(Re(Ju) = Jest,u) Owz |13+ Ar||T> = To, |2

[1] Imry Kissos, Lior Fritz, Matan Goldman, Omer Meir, Eduard Oks, and Mark Kliger. Beyond weak perspective for monocular
3d human pose estimation, ECCV 2020 Workshops
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Camera optimization, visualization

input image Blended Keypoints
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Ours, after camera optimization
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Full model optimization

E(B,0,%) = Ej + Xg,Eg, + Ao, Eg,; + Amn), By, +
Aalio + AﬁEﬁ + AeEe + AcEc

EJ(/B,O K Jest Z ’yzw— p(HK(Re( ( )) —Jest,z‘):dataterm

jointi

Eef : Emh ) Eﬂa Es: simple L2 priors for facial pose, hand pose, body shape, and facial expressions

- 0;
Ea (eb) — Zze(elbows knees) € . angle prior that penalizes extreme bendings for elbows and knees

B8 = 3 { S (1= 0 (0)melP+

(fs(0),f1(0))eC \vsEfs

Z || = \ij V¢ nt|| > , interpenetration penalty
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Body pose prior Eg

E(ﬁa 97 ¢) — EJ " n )‘HbEOb + AOfEHf + )‘thmh+
Aalio + )\ﬁEﬁ + AeEe + AcEc

Z ~ N(0,I) € R32

SMPLify-X: ! Ours:
Dense - 32 x 512
. LReLU - 0.2 ), 2
L2 prior on the D'°P°“; -025 { 4 , Eg, = |6y — 0b,||5
latent vector of x,
Vposer Dense - 512 x 512
5 CReib= 2 More accurate pose
1Z]13 ' prior improves the
Dense - 512 x 207 performance and
- - : . reduces the runtime b
] Input body pose prediction reconstruction with half! y
R e [-1,1]2°7 image by regression VPoser alt:
| methods

inv. Rodrigues

Problem: erroneous arm pose due to
} reconstruction loss of VPoser

€ R®

R

axis angle

|

SMPLHF
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Evaluation



Dataset and metrics

Dataset:

- Take upper-body crops of the benchmark
EHF dataset

- Use the ground-truth camera parameters
to project all vertices of the pseudo
ground-truth 3D mesh into 2D space

- Record the indices of vertices within the
boundary for each ground-truth mesh and
subset vertices with the same indices from
our fitting results

Metrics:
Procrustes Alignment on vertices (PA-V2V) and 14 LSP-common joints (PA-MPJPE)

Align the whole observed mesh, body, face, and left/right hands separately, and report each loss
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Quantitative evaluation

. PA-V2V (mm) | PA-MPJPE (mm) |
Method Type | Body Model | Time (8) 43— 5qv T Face | /R Hand | 14 Body Joints
SMPLify-X’ [')] | O | SMPL-X | 40-60 | 5639 | 68.77 | 6.25 | 12.67/13.17 78.56
SMPLify-X[ '] | O | SMPL-X | 40-60 | 68.71 | 82.17 | 8.76 | 12.54/13.73 9871
SPIN [ ] H SMPL <1 | N/A | 6046 | N/A N/A 7434
ProHMR [ -] H SMPL <1 | N/A | 5210 | N/A N/A 60.69
EFT [17] H SMPL <1 | N/A | 4341 | N/A N/A 55.16
PARE [ ] R SMPL <1 | N/A | 4033 | N/A N/A 49.15
FrankMocap [1”] | R | SMPL-X <1 | 5459 | 53.02 | 550 | 10.69/11.79 66.61
PIXIE [] R | SMPL-X <1 43.16 | 5.29 |[11.25/10.58 49.58
ExPose [ ] R | SMPL-X <1 | 39.08 [[39.76 | 5.13 | 12.85/12.71 45.78
Ours H | SMPL-X | 10-30 | 3278 | 38.03 | 7.03 | 12.23/12.76 4226

Table 1. Quantitative evaluation results on the 100 images in the cropped EHF dataset. Our method outperforms the state of the art
regression methods w.r.t main body and the whole 3D mesh, and reduces the runtime by about half compared to the original SMPLify-
X pipeline, but is slightly worse w.r.t face and hand performance. Note that SMPLify-X’ uses the ground-truth focal length and is not
directly comparable with other methods. All error scores are recorded only on the observed parts of the images. “O/R/H” denotes
Optimization/Regression/Hybrid.
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Quantitative evaluation, heatmaps on PA-V2V

PIXIE ExPose
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Qualitative evaluation

ETHziirich Input image ExPose




Ablation studies

Version PA-V2y (o).,

All Body | Face | L/RHand
Ours 32.78 38.03 7.03  12.23/12.76
Keypoints Blending:
Blend face keypoints +0.72 +0.48 | +0.06 | +0.02/+0.04
Blend body only +1.12 +0.89 ).0 +0.20/
OpenPose only +1.53 +0.68 03/
MMPose only +2.79 +3.13 | +0.90 | +1.95/+2.07
Aligned to MMPose +1.17 +2.64 | +0.03 | +1.39/+1.59
Thresholding:
Without threshold +0.85 +0.89 | +0.00 1/
Threshold on hands +0.09 +0.22 +0.08/+0.06
Threshold on face +0.59 +0.90 | +0.00 | +0.36/
Body Pose Prior:
PARE body pose +3.33 +2.17 | +0.29 | +1.85/+1.60
PIXIE body pose +0.85 +0.93 /
ExPose body pose +2.76 +1.18 | +0.05 12/+1.10
Use VPoser +11.07 | +11.12 +0.76/+1.13

Using VPoser Ours (using the full pose space)

Table 2. Ablation studies on cropped EHF dataset using the stricter . . o
PA-V2V metric. Using VPoser could produces inaccurate arm poses, but it fits the

face slightly more accurately
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Conclusion

We modify the SMPLIify-X pipeline to improve its robustness under partially-observed settings.
Following the optimization-regression hybrid manner, we make several contributions:

- keypoints blending with confidence calibration, and thresholding on confidence values

- initializing the camera parameters and body pose with results of regression-based methods

- replacing the pose prior on latent representation with the actual pose space and modify the
optimization weights accordingly

However,

- quantitative evaluation is only performed on 100 images, not extensive enough
- face mesh reconstruction accuracy is compromised
- body shape is only a rough approximation based on 2D keypoints
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Future works

larger partially-observed human dataset <"and et al- EgoBody Dataset, ECCV 2022

incorporate

inverse rendering

incorporate into the
silhouette into optimization
objective scheme
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Thank yout!



