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INTRODUCTION

Semiconductor nanocrystals play key roles in biomedical 
applications. These tiny light-emitting molecules are able 
to optically tag proteins for molecular imaging and 
targeted therapy. Therefore, intense amount of researches 
are done on changing the size and shape of these particles 
to tune for the desired optical properties.

Predicting Single Peak
The first goal this project focused on is predicting the 
wavelength of peak transmission and reflection of 
semiconductor bilayers using materials TiO2, HfO2, ZnO, 
AlAs, Ge, Si, and ZnS as the first layer (or incident layer) 
and second layer alternatively with thicknesses varying 
from 100 nm to 500 nm. In our models, four properties 
will be varied and used as input parameters: the type of 
material on the first layer (Material 1), the type of 
material on the second layer (Material 2), the thickness of 
Material 1 in nm, and lastly, the thickness of Material 2 in 
nm.

Entire Spectrum
The application of high throughput screening to the 
search for materials with specific optical properties is 
advantageous for the development of smart windows, or 
electrochemical films that respond to light signals to 
conserve resources. The design of these materials requires 
optimizing their optical responses, but standard 
computational methods for determining transmission and 
other property values requires solving Maxwell’s 
equations, which is computational expensive when the 
materials design becomes complicated. In order to further 
decrease the cost of finding optimal materials 
combination, we propose an inverse materials design 
system that utilizes supervised machine learning to 
replace Maxwell's solver to predict the entire spectrum. 
We perform an experiment using materials TiO2 and
HfO2. Once we have the model, a differential evolution 
algorithm is implemented to design systems with desired 
transmission spectrums.

METHOD

1. Single Peak

1.1 Linear Regression Model

1.2 Random Forest Model
The decision to use Random Forest Regression 

algorithm for this research is quite intuitive. Since there 
are only seven materials in our dataset and we observed 
that there are similarity in reflection/transmission for 
certain materials and thickness combination, it is 
reasonable to group several materials or thickness 
together in the first place to separate the similar 
combinations from other combinations and then find out 
the differences among the group.

2. Entire Spectrum
We use a Matlab based Maxwell solver to generate 

database. We selected the 200 - 900 nm visible 
wavelength range and 100 – 500 nm thickness range with 
an interval of 5 nm. The features include material 
thicknesses, combinations (in form of one-hot vector), 
and a particular wavelength value. The label to be 
predicted is the corresponding transmission value. All 
features are rescaled in between 0 and 1. The loss 
function used is Root Mean Square Error (RMSE).

We tried two different approaches to perform 
regression for the entire transmission spectrums. 10% of 
data is shuffled out for testing.
1) Random Forest: the remaining 90% data is used to for 

training. All hyper-parameters are tuned by 
performing grid-search with a 10-fold cross-
validation.

2) Deep Learning: a stacked deep LSTM neural network 
is trained on 80% training data and 10% validation 
data. Hyper-parameters are tuned by trial and error. A
10-fold cross validation is performed. The final
prediction is averaged on all 10 models.

To test the performance of our inverse design, a 
reasonable thickness range which the target thickness 
combination is likely to lie in is selected to build a 
candidate pool. The differential evolution algorithm goes 
through 1000 iterations, for each iteration, some new 
random or refined thickness combinations will be added 
in and unnecessary combinations will be removed. 
Finally, the materials combination with the lowest error 
was selected as the final solution.

RESULTS
1. Single Peak Model Comparison

2. Candidate Material Combinations

3. Entire Spectrum Prediction

CONCLUSIONS

The Long Short-Term Memory deep neural network 
model is shown to have better performance than the 
Random Forest when predicting the entire spectrums. It 
produces smaller average and standard deviations on 
both interpolative and extrapolative test cases.

Figure 1: Schematic of the multilayer material systems 

studied in this work.

Figure 2: (180 nm TiO2, 330 nm HfO2) Spectrum in 

16,000 nm and 800 nm Wavelength Range 

Table 1:  Comparison of MAE differences for Two Models

Overall, we tried two 
different approaches for the 
Linear Regression Model:
1) Allow materials as the input 
parameters and build one 
giant model.
2) Build different models for 
distinct material combinations 
with thickness1 and thickness2 
as the only parameters.

Figure 3: 3D Representation of the Linear 

Relationship between Thicknesses and 

Reflection Peak Position

Figure 4:  

[Good Match]

1st Layer: HfO2

2nd Layer: ZnS

Figure 5:  

[Peak Wavelength Position Match]

1st Layer: Ge

2nd Layer: Si

Figure 6:  

[Bad Match] 

1st Layer: ZnO

2nd Layer: Ge

Table 2:  Comparison of Two Models of Transmission Spectrum Prediction

Figure 7: Comparison of Prediction Error between 

Random Forest (left) and LSTM (right) on TiO2_HfO2

system

Figure 8: Comparison of performance between Random Forest (left) 

and LSTM (right) on both interpolative and extrapolative cases

Table 3:  Comparison  of  RMSE of  Inverse Design  between  LSTM  and 

Random Forest Model


