
Leveraging Motion Imitation in Reinforcement Learning for Biped Character

Xiyi Chen*

ETH Zurich
xiychen@ethz.ch

Anthony Eid*

ETH Zurich
anteid@ethz.ch

Kexin Shi*

ETH Zurich
kexshi@ethz.ch

Jin Jin*

ETH Zurich
jinjin@ethz.ch

Fatemeh Zargarbashi
ETH Zurich

fatemeh.zargarbashi@inf.ethz.ch

Stelian Coros
ETH Zurich

scoros@inf.ethz.ch

Siyu Tang
ETH Zurich

siyu.tang@inf.ethz.ch

Abstract

This paper delves into the significant realm of teach-
ing highly dynamic skills to robots and virtual characters
through imitation of motion capture clips, a problem that
bridges the divide between human expertise and robotic ca-
pabilities. It first scrutinizes the strengths and weaknesses
of current approaches, drawing attention to their struggles
with sophisticated, agile movements and the flexibility to
adapt to diverse scenarios. Based on recent advances in
deep learning, reinforcement learning (RL), and imitation
learning, we build upon DeepMimic to combine these tech-
niques to optimize control policies and facilitate more re-
alistic, diverse, and adaptable dynamic skills. We demon-
strate our approach using the DeepMimic motion clip data,
successfully deploying it on the bob biped robot for exe-
cuting various movements, such as walking, running, and
jumping. Additionally, a curriculum training strategy is
proposed to extend our algorithm’s applicability to various
biped robots with different shapes, masses, and dynamics
models, thereby driving the innovation in robotics and vir-
tual reality applications. Our code and demo are publicly
available at https://github.com/xiyichen/dh-project.

1. Introduction

Learning highly dynamic skills by imitating reference
motion capture clips is a compelling research area within
robotics and animation. The ability to teach robots and vir-
tual characters to perform complex and agile movements
has significant implications across various domains, includ-
ing entertainment, robotics, virtual reality, and human-robot
interaction. By leveraging the rich information captured in
motion capture data, these methods aim to bridge the gap
between human expertise in dynamic motions and the ca-

*These authors share the first authorship.

pabilities of robotic systems. In this paper, we will explore
the importance of this problem, the limitations of existing
methods, and our proposed method.

The problem of teaching highly dynamic skills through
motion imitation is crucial because it enables robots and vir-
tual characters to perform tasks that involve agility, acrobat-
ics, and precise control in dynamic environments. Exam-
ples include performing aerial maneuvers, acrobatic flips,
parkour-style movements, and other physically demanding
actions. Such skills find applications in entertainment in-
dustries for creating lifelike and engaging characters, in
robotics for enabling agile robotic systems capable of navi-
gating complex environments, and in virtual reality for im-
mersing users in dynamic and realistic virtual experiences.

Existing methods have made significant progress in mo-
tion imitation, but they often fall short when it comes to
learning highly dynamic skills. Traditional methods based
on kinematic controllers and handcrafted rules struggle to
capture the intricacies and nuances of agile movements.
They rely on manual engineering and lack the flexibility to
adapt to diverse scenarios and achieve natural and realistic
dynamic motions.

To address these limitations, recent research has pro-
posed novel approaches that combine deep learning, re-
inforcement learning, imitation learning and optimization
techniques to learn highly dynamic skills by imitating ref-
erence motion capture clips. These methods aim to leverage
the power of deep neural networks to learn complex repre-
sentations of motion data and optimize control policies that
reproduce the desired dynamic behaviors. The combination
of data-driven learning, physics-based simulation, and op-
timization methods can now capture the subtle details and
nuances of agile motions, enabling robots and virtual char-
acters to perform dynamic skills with a higher level of re-
alism, diversity, and adaptability expanding the possibilities
for robotics, entertainment, and virtual reality applications.

One notable paper in this area is DeepMimic [22] by

1

https://github.com/xiyichen/dh-project

Peng et al. The authors introduce a deep reinforcement
learning framework that combines motion capture data with
physics-based simulation to teach virtual characters highly
dynamic skills. Their approach enables characters to learn a
wide range of dynamic movements, such as acrobatic flips,
aerial dives, and athletic jumps, surpassing the capabilities
of traditional kinematic controllers.

Another significant contribution is OPT-Mimic [8] by
Jiang et al. The paper presents a framework that inte-
grates trajectory optimization and motion imitation tech-
niques to enable robots to learn highly dynamic and agile
motor skills. By iteratively refining the reference motion
capture trajectories through optimal control and incorporat-
ing them into the learning process, the approach produces
robots capable of performing complex dynamic tasks with
enhanced stability and efficiency.

Furthermore, recent advancements in learning adversar-
ial motion priors (AMP) [23] by Peng et al. have shown
promise in improving the quality and diversity of imitated
motions. The authors introduced an adversarial training
framework that combines deep RL with generative adver-
sarial networks (GANs). The adversarial discriminator net-
work is trained to distinguish between imitated motions and
real motion capture data. By leveraging adversarial training,
the imitating system can generate motions that exhibit en-
hanced realism, fluidity, and diversity. This capability opens
avenues for creating lifelike virtual characters, realistic sim-
ulations, and agile robotic systems.

In this paper, we propose a reinforcement learning-based
method to imitate agile behaviors from motion clips data
provided in Deepmimic [22], and deploy it on the bob biped
robot with successfully performing walk, run, and jump mo-
tion. We also attempt to train a policy that enables bob to
walk in different heading directions with different veloci-
ties as well as single policy for multiple motions via skill-
selector. We propose finally a curriculum training strategy
to generalize our algorithm on different biped robots with
different shape, mass and dynamics models.

The rest of this paper is structured in the following or-
der: Section 2 introduces the development in motion learn-
ing, Section 3 details the components of the proposed ap-
proach, Section 4 demonstrates the performance and the ab-
lation study, Section 5 summarizes this work and throw out
thoughts for the future, and Section 6 details the contribu-
tion among team members.

2. Related Work

2.1. Kinematic and Physics-based Models

Kinematic and physics-based models have a longstand-
ing history in representing, analyzing, and recreating human
motion, serving as crucial cornerstones in computer anima-
tion and robotics. Initial work in kinematic modeling used

joint angles over time to recreate movement [20]. While
these deterministic models provided control, the resulting
movements often appeared stiff and robotic, lacking the flu-
idity of natural human motion.

Recognizing this shortfall, researchers began to incorpo-
rate physics-based models that considered forces, torques,
and biomechanical constraints into their work [25]. In com-
puter graphics, pioneers like Popovic et al. [26] initiated
physically-based animation of human figures, leveraging
control methods to generate life-like behaviors.

Despite added realism, physics-based models were in-
herently complex due to numerous factors, including the
need for maintaining balance and coordination. As a so-
lution, optimization-based methods were introduced [18].
This approach, as demonstrated by Liu et al. [19], optimized
over multiple frames to generate stable and smooth move-
ments, thus marking significant improvements. However,
these methods often required substantial computational re-
sources, limiting their applicability in real-time scenarios.

To overcome these limitations, researchers pivoted to-
wards data-driven approaches that used motion capture
(MoCap) data as a reference for generating animations [3,
27]. While these methods improved the generation of com-
plex motions, challenges remained when applying highly
dynamic skills due to difficulties in temporal and spatial
alignment.

2.2. Motion Imitation

Motion imitation, particularly of MoCap data, is a re-
search area that has received significant attention. Early
works like that of Kovar et al. [16] used motion graphs to
blend pre-recorded clips into novel sequences. However,
these methods often failed to produce plausible transitions
in a continuous, unsegmented stream of motion.

Later, Holden et al. [14] addressed these issues by learn-
ing a neural network policy directly from MoCap data,
which allowed characters to reproduce complex human lo-
comotion. Liu et al. [2] extended this approach to a broader
set of skills through the use of hierarchical policies. How-
ever, challenges still persist in capturing highly dynamic
skills due to complexities in temporal and spatial alignment,
as well as the nuances in motion dynamics. Aytar et al. [4]
demonstrated the potential of RL in learning from visual
demonstrations. However, the applicability to highly dy-
namic skills remains a challenge.

Recent work by Peng et al. [22] proposed DeepMimic,
an approach that used RL to train policies to imitate com-
plex skills from MoCap data. This approach demonstrated
the robust control of simulated characters and the ability
to learn a variety of skills from reference MoCap data.
However, this method also required significant computa-
tional resources and had limitations in generalizing to un-
seen tasks [21].

2

2.3. Reinforcement Learning

Reinforcement learning has been a significant subject of
research for learning complex motion skills, mainly due to
its ability to learn from trial-and-error experience. Sutton
and Barto’s work [29] is a pioneering piece in this field,
providing an understanding of the principles of RL. Early
works of RL in motion skills focused on low-dimensional
problems with few state-action pairs [31]. The successful
application of RL to high-dimensional, continuous control
tasks were achieved by Todorov et al. [30] with their Mu-
JoCo physics engine, a significant tool for RL in continuous
action spaces.

In terms of motion skills, several works have proposed
RL methods for locomotion. The works of Peng et al. [22]
and Heess et al. [12] use RL for learning locomotion in
complex, dynamic environments. Notably, Heess et al.
demonstrated locomotion skills transferable to novel tasks,
showing RL’s generalizability [12].

RL has also been successfully applied to manipulation
tasks. Levine et al.’s work on end-to-end training of deep
visuomotor policies [17] pioneered RL’s use for manipula-
tion, enabling a robot to perform object manipulation based
solely on raw pixel input. In addition, Popov et al. [24]
proposed data-efficient manipulation skills learning using a
method called Data Aggregation, achieving superior perfor-
mance on several benchmarks.

The combination of RL with imitation learning [13] and
inverse RL [1] have also shown promising results in mo-
tion skill acquisition, enabling the agent to learn from ex-
pert demonstrations, thereby reducing the time and samples
required for effective learning.

In spite of the significant improvement brought by RL,
it often suffers from sample inefficiency, requiring many
interactions with the environment to learn effectively [6].
Hafner et al. [11] and Kaiser et al. [11] proposed Dreamer
and DreamerV2, respectively, to learn behaviors purely
from predictions, significantly improving sample efficiency.
Off-policy RL algorithms, such as SAC [10], TD3 [9], and
D4PG [5], are noteworthy as they can learn from previous
experiences, contributing to the solution of sample ineffi-
ciency. For instance, SAC has been used to learn diverse
robotic skills from scratch [10].

Besides, some methods propose to adopt parallel learn-
ing in curriculum to improve the data efficiency. By gen-
erating massive environments with increasing difficulties, it
helps the agent to learn more samples effectively. For exam-
ple, in Florensa et al. [7], a reverse curriculum strategy was
used where the agent begins learning in states near the goal
and progressively learns from states further away. Justesen
et al. [15] applied a curriculum learning approach to train
a deep RL agent for playing complex video games, demon-
strating the potential of curriculum strategies in RL for real-
world applications. Rudin et al. [28] leverage a massively

paralleled curriculum system to achieve rapid learning of
complex locomotion skills, enabling the robot to learn to
walk in just a few minutes of real-time training.

In this paper, we build upon DeepMimic [22] to enable
robot Bob perform dynamic motion skills. To transfer the
algorithm to a new robot, we incorporate the pipeline in
DeepMimic [22] with the manually defined mass curricu-
lum so that the new robot can gradually adapt to the mo-
tions from simple to difficult. We have proven that such a
combination can help generalize the original algorithm to
different robot models.

3. Method
In this paper, we use the biped robot Bob in Assignment

2 of the Digital Human course 1 to reproduce the imitation
task in Deepmimic [22]. The main workflow of our algo-
rithm is shown in Figure 1.

3.1. Joint Mapping

In order to use the MoCap data that is provided in Deep-
mimic [22], we need to adapt it to the kinematic structure
of the biped bob. The data specifies the position and rota-
tion of the pelvis along with the 3D rotation of eight spher-
ical joints (as quaternions) and four revolute joints. On the
other hand, bob has 44 revolute joints, which makes the
matching process quite intricate. We first matched the joints
based on their position. Each of the spherical joints was
matched with three revolute joints connected in series. The
axis of rotation of those joints along with their order dictates
the Euler angle base that should be used in converting the
quaternion to 3 angles that can be assigned to each joint.
Finally, the relative rotation of the joint frame relative to
the root frame should also be considered: the frame of each
joint in the data should be rotated to align it with the first
joint of the triplet that matches it. Most of the joints had the
axis aligned with one or 2 axes pointing in the opposite di-
rection of the corresponding one. A quick change of sign to
the corresponding Euler angle is enough to align them. The
ankle joints were the only special case, since they are spher-
ical joints in the Deepmimic [22] MoCap data, but are only
represented by two revolute joints in bob’s kinematic setup.
To remedy this, the quaternions were converted to Euler an-
gles based on the order of the two available axis. The third
angle can then be easily disregarded. Table 1 shows the joint
correspondences along with the axes order used in the Eu-
ler angle conversion and the axes that were flipped to ensure
proper alignment.

Bob’s 18 joints that were not matched with the reference
motions are set based on their default angles. Those joints

1https://github.com/Digital-Humans-23/a2

3

https://github.com/Digital-Humans-23/a2

Figure 1. Main Workflow. First we align body joints between Humanoid robot and Bob robot. Then we adopt model-free Reinforcement
Learning with mass curriculum training strategy to learn reference motions from MoCap data provided in Deepmimic [22]. The inputs of
policy network are states, velocity and heading commands, and skill selector when training one policy for multiple motions. The network
architecture is two-layer MLP and the output is action.

Deepmimic Bob Order Flipped Axes
pelvis pelvis yzx z
chest upperback zyx z
neck lowerneck zyx z

l/r hip l/r hip zxy y, z
l/r knee (1D) l/r knee N/A N/A

l/r ankle l/r ankle (2D) yxz N/A
l/r shoulder l/r shoulder zxy y, z

l/r elbow (1D) l/r elbow N/A N/A

Table 1. Joint mappings from humanoid in Deepmimic [22] to
Bob. “Order” denotes the order for euler angle rotations we used
when converting the quaternions in Deepmimic data to euler an-
gles for Bob’s observation space. For some joints, we put a minus
sign on the flipped axes of the converted euler rotation axes.

should be fixed so they don’t interfere with the trained mo-
tion. Although they are removed from the action space,
their rotations could still change in the physical simulation.
Therefore, we tried increasing their stiffness parameters to
infinity to make them as rigid as possible ensuring they have
minimal changes.

To visualize the matching, we made sure to run a train-

ing with one step per episode and each time we reset bob’s
joints to the converted angles that we got from the MoCap
data. Each time we reset the environment we increase the
frame counter so we can check out the complete motion.

3.2. State and Action Spaces

Our state space includes the 3D position and 3D rota-
tion of the pelvis point and 44-dimensional joint rotations
for other joints of the humanoid. In addition, there’s also
a 50-dimensional velocity vector, including 3D velocity of
the pelvis position, 3D velocity of the pelvis rotation, and
44-dimensional velocities for the 44 other joints. The total
dimension of the state space is therefore 100. Our continu-
ous action space includes the joint rotations to execute for
the 26 joints out of the 44 joints that are mapped with deep-
mimic’s humanoid. Note that the other 18 joints that are
not mapped were originally in the action space, but we re-
move them and always set them to the default values before
applying them in the environment, as explained in section
3.1.

3.3. Random State Initialization

In order to determine the target frame in the reference
motion, we follow Deepmimic [22] to introduce a phase

4

variable ϕ and add it into the observation space as an ad-
ditional input to the policy network. When starting an
episode, we randomly sample the initial phase variable
ϕinit ∈ [0, 1] for loop motions or ϕinit ∈ [0, 0.5] for non-
loop motions. For loop motions such as walking and run-
ning, since the reference motion is short, we do not stop
the training episode when reaching the end of the reference
motion. Instead, we offset the pelvis position of the refer-
ence motion by the entire distance the humanoid has trav-
eled during the reference motion to start a new loop. The
corresponding frame index is i = ϕinit ∗ (N − 1), where
N is the total number of frames in the reference motion.
To initialize the observation space, we linearly interpolate
(LERP) between ith and (i+ 1)th frames to get the initial
joint rotations. As for the velocities we set them based on
the first order Euler approximation of the velocities in the
ith frame. In the step function, ϕt for a current step t in the
episode is calculated as:

ϕt =
dt · t
T

+ ϕinit (1)

where dt is the duration of a step, and T is the entire du-
ration of the reference motion. If ϕt > 1, we terminate the
episode for non-loop motions. For loop motions, we take its
integer part as the number of loops that the reference mo-
tion is currently in to offset the pelvis position of the target
humanoid, and only keep the decimal part for ϕt. We again
calculate it = ϕt ∗ (N − 1) to get the frame index of the
current timestep for the corresponding reward functions.

We observe that this randomization technique is signif-
icantly helpful for learning stable motions. As suggested
in [22], the random state initialization can be interpreted
as “an additional channel through which the agent can ac-
cess information from the reference motion in the form of a
more informative initial state distribution”. Always initial-
izing the episode to the first frame limits the agent to only
learn the motion through reward functions, which converges
more slowly and sometimes even leads to failed imitation.

3.4. Reward Functions

We follow [22] to define the global reward functions:

rpt = exp(−2(
∑
j

||q̂jt ⊖ qjt ||2)) (2)

rvt = exp(−0.1(
∑
j

||ˆ̇qjt − q̇jt ||2)) (3)

rct = exp(−10(||p̂ct − pct ||2)) (4)

rpt is the pose reward function that encourages the ob-
served joint rotation quaternions q̂jt to be close to the ref-
erence quaternions qjt (the target reference is determined
based on the current phase of the environment). To cal-
culate the quaternion difference ⊖, we convert the observed

joint rotation Euler angles to quaternions following the or-
ders and flipping axes in table 1. We then multiply the tar-
get quaternion with the inverse of the observed quaternion
to get the relative rotation between them. We convert this
quaternion to an axis-angle representation and feed the cor-
responding angle in the reward formula above. rvt is the
velocity reward function. The target velocities are approx-
imated using first degree Euler between the corresponding
nearest frames. rct is the center-of-mass reward. For sim-
plicity, we define the center-of-mass point in our humanoid
p̂ct to be the pelvis point and directly compare it with pelvis
position of reference frames pct . Due to the difference in
height and limb lengths between our humanoid and Deep-
mimic’s, we ignore the end-effector reward which is also
used by Deepmimic. Similar to random state initialization,
we also perform linear interpolation on ith and (i+ 1)th
frames for quaternions q̂jt and euler angles ˆ̇qjt using the
frame index it of the current timestep calculated in section
3.3.

Our total reward function is:

rIt = wprpt + wvrvt + wcrct (5)

where the hyper-parameter weights are set as wp =
0.72, wv = 0.17, wc = 0.11.

3.5. Velocity and Heading Commanding

Now that bob is able to walk according to the pace and
direction set while generating the MoCap data, the next step
is to train policies that can enable walking in different head-
ing angles and at different speeds. To achieve that we need
first to augment the observation tensor to include our goal
parameters: the speed v and the heading angle θ, indicat-
ing the heading on the horizontal plane with θ = 0 aligned
with the z axis. θ can be set to any value between 0 and
2π, and v is chosen to be between 0.5 and 2 m/s, since the
provided data for walking is collected with a walking speed
of 1 m/s whereas the jogging data has a speed of 2.6 m/s. At
the beginning of each episode, we sample a random head-
ing and speed from the respective intervals in order to train
policy that can handle all different goals that the user might
choose. The pelvis position, orientation and velocity used
in the initialization of the episode are modified to match
the new configuration with the new heading using the equa-
tions:

r =
√
x2
target + y2target (6)

xi = r.(vgoal/vwalking).sin(θgoal) (7)

yi = r.(vgoal/vwalking).cos(θgoal) (8)

yawi = yawtarget + θgoal (9)

vxi = vgoal.sin(θgoal) (10)

5

vyi = vgoal.sin(θgoal) (11)

All other parameters are set based on the target value com-
puted by interpolation using the random phase ϕ

To make sure bob follows the speed and heading goals,
we replace the center of mass reward and the component
of the velocity reward that is computed using the pelvis ve-
locity. We substitute those rewards with a task goal reward
which was formulated similarly in Deepmimic

rgoal = exp(−2.5(max(vgoal − vproj , 0))
2) (12)

vproj is the projection velocity vector along the heading.

vproj = vTobs.dheading (13)

In this formulation, we do not penalize having a speed larger
than the set goal.

3.6. Mass Curriculum

Using the random state initialization in section 3.3 and
the reward functions in section 3.4 enables us to train a sta-
ble walking motion. However, when we extend it to more
complex motions such as running and jumping, we observe
that the bob always tends to fall down and never success-
fully imitates to step forward.

We apply a mass curriculum to solve this issue to let our
robot gradually adapt to the motions from simple to diffi-
cult. The masses for all body parts are initialized to 0.01 at
the beginning of an episode. When the maximum episode
length an episode ever reached gets to 40, we increase the
masses by 25%. When it increases by another 10, we in-
crease the masses by another 25%. We repeat this until
100% of the real masses are reached.

3.7. Training One Policy for Multiple Motions

In addition to training a different policy for each single
motion, we also attempt to train a single policy for multi-
ple motions via a skill selector, as proposed by [22]. To
be precise, we augment the observation with a goal vector
in form of a one-hot vector representing one of the specific
motions to train. We train our skill-selector on walk, run,
and jump, the 3 motions we successfully trained with sin-
gle policies, with a mass curriculum. The overall reward
function stays the same as equation 5, but rIt is computed as
rit on the selected motion i. When starting an episode, we
randomly sample an integer from [0,3] and select it as the
motion to learn for the current episode, and load the target
motion accordingly.

4. Results
4.1. Joint Mapping Results

Figure 2, 3, 4 shows 3 example motions mapped to Bob
from a Deepmimic reference. To see more examples and
their animations, please visit our github repository.

Figure 2. Joint Mapping Results: Punch

Figure 3. Joint Mapping Results: Backflip

Figure 4. Joint Mapping Results: Backflip

4.2. One Policy for Each Motion

Figure 5. Training Results: Walk

Figure 6. Training Results: Walk, Random Velocity and Heading

As shown in figure 5, we successfully learn walking with
the reward functions in section 3.4 without any curriculum.
The bob could walk continuously until the episode ends

6

Figure 7. Training Results: Run

Figure 8. Training results: Jump

Figure 9. Ablation Results: Run without Mass Curriculum

without falling down. When adding the velocity and head-
ing goal, as shown in figure 6, it successfully learns to walk
in random directions with random speed, although the bob
could not stabilize for as long as walking in the reference
direction. Figure 7 and 8 shows that we successfully learn
running and jumping with mass curriculum, although also
not as stable as walking. Figure 9 provides a comparison
that trains running without mass curriculum. In such case,
the bob consistently falls down from the initialized pose and
position and never properly learns to step forward.

4.3. Skill Selector

Figure 10. Training Results: Skill Selector. From left to right:
jump, run, walk. Only walking could be successfully imitated.

Requiring a policy network to jointly learn multiple mo-
tions via one-hot encoding turns out to be challenging. As

figure 10 shows, even with the mass curriculum deployed,
our skill selector only manages to imitate walking well,
while the bob falls in both jumping and running.

5. Summary

5.1. Conclusion

Learning highly dynamic skills by imitating reference
motion capture clips represents an exciting frontier in the
cross-disciplinary realm of robotics, animation, machine
learning, and human-robot interaction. In this research, we
delved into this intriguing domain by building upon a rein-
forcement learning-based method [22], utilizing reference
motion clips to facilitate the learning process. The proposed
method is deployed on a biped robot, ’Bob’, enabling it to
perform dynamic tasks such as walking, running, and jump-
ing.

This approach breaks away from the constraints of tra-
ditional methods based on kinematic controllers and hand-
crafted rules, which often struggle with complex, agile
movements. By incorporating advanced techniques from
deep learning, reinforcement learning, and imitation learn-
ing, we significantly enhance the ability of Bob to execute
agile behaviors. Furthermore, our training strategy gener-
alizes to other biped robots with different shapes, mass,
and dynamic models, thereby amplifying its practical sig-
nificance.

A distinctive aspect of this methodology is the ran-
dom state initialization, which we borrowed from Deep-
Mimic [22], adding a phase variable to the observation
space. This variable serves as an effective mechanism for
the agent to access informative initial state distribution, en-
abling faster convergence of learning and successful imita-
tion of reference motions. Our customized reward functions
bolster the learning process by promoting optimal pose, ve-
locity, and center-of-mass.

The mass curriculum strategy, introduced in our re-
search, facilitates the training of complex motions such as
running and jumping. This strategy gradually increases the
body mass during the episode, allowing the Bob robot to
adapt to challenging motions without losing balance.

Simultaneously, we implemented a method that trains a
policy enabling the robot to walk in any heading direction
or speed by augmenting our observation space to include
our goal parameters and adding a reward encouraging the
robot to track the desired goal velocity.

Finally, we tackled the ambitious goal of training a single
policy for multiple motions, leveraging a skill-selector. The
success in training a skill-selector for walking, running, and
jumping motions further demonstrates the potential of the
approach.

7

5.2. Limitations and Future Works

However, there are certain limitations. The complexity
and high-dimensionality of motion data pose challenges to
the efficiency and robustness of our method. We also as-
sume a perfect physics engine and sensor data, which is
often not the case in real-world applications. The current
method still cannot stabilize the motions for long and lacks
the ability to cope with unexpected disturbances and rapidly
changing environments. In addition, learning multiple mo-
tions jointly via a skill selector is more challenging than
learning one policy for each motion since it takes signifi-
cantly longer to train to reach a common policy that works
for all motion. The Deepmimic framework suggests train-
ing a composite policy from the individual policy obtained
previously. This method has proven to be more promising
especially if the skills that we want to use are very diverse.

Looking forward, several exciting directions exist for ex-
tending our work. First, integrating techniques for learning
robust policies against external disturbances, e.g. adding
noise during training, could be crucial for practical appli-
cations. Second, exploring approaches that reduce the re-
liance on perfect sensor data, such as unsupervised and self-
supervised learning methods, could increase the method’s
applicability. Third, our approach can be enriched by in-
vestigating multi-task learning and meta-learning strategies
that would allow a single policy to learn a broader range
of skills and adapt quickly to new tasks. Lastly, regarding
learning one policy for multiple motions, a learnable latent
code for each motion could be potentially added to make
strengthen the expressiveness of one-hot encoding in the
skill selector. Meanwhile, the other 2 composite methods
proposed in Deepmimic, i.e., multi-clip reward and com-
posite policy can also be attempted. Due to our limited time
in this project, we leave them for future works.

6. Contributions of team members
• Joint Mapping/Visualization from Deepmimic to Bob:

Anthony, Xiyi

• Implementing the general framework (Random state
initialization, reward formulation...): Xiyi, Anthony

• Training individual motions: Anthony, Xiyi, Jin,
Kexin

• Implementing of the mass curriculum: Xiyi, Anthony

• Training with mass curriculum: Kexin, Xiyi

• Implementing velocity and heading commanding: An-
thony

• Training velocity and heading commanding: Anthony,
Xiyi

• Implementing and training skill selector: Xiyi

• Writing report: Xiyi, Jin Kexin, Anthony

7. Acknowledgements
This is a course project for Digital Humans (263-5806-

00L) at ETH Zurich, instructed by Prof. Stelian Coros and
Prof. Siyu Tang. We appreciate our supervisor Fatemeh
Zargarbashi for her help with the project. Our implementa-
tion is based on the code of assignment 2 of the course.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning

via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
page 1, 2004. 3

[2] Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan
Chen, and Daniel Cohen-Or. Learning character-agnostic
motion for motion retargeting in 2d. arXiv preprint
arXiv:1905.01680, 2019. 2

[3] Okan Arikan and David A Forsyth. Interactive motion gen-
eration from examples. ACM Transactions on Graphics
(TOG), 21(3):483–490, 2002. 2

[4] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine,
Ziyu Wang, and Nando De Freitas. Playing hard exploration
games by watching youtube. Advances in neural information
processing systems, 31, 2018. 2

[5] Gabriel Barth-Maron, Matthew W Hoffman, David Bud-
den, Will Dabney, Dan Horgan, Dhruva Tb, Alistair Mul-
dal, Nicolas Heess, and Timothy Lillicrap. Distributed dis-
tributional deterministic policy gradients. arXiv preprint
arXiv:1804.08617, 2018. 3

[6] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz,
Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hester.
Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110(9):2419–
2468, 2021. 3

[7] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochas-
tic neural networks for hierarchical reinforcement learning.
arXiv preprint arXiv:1704.03012, 2017. 3

[8] Yuni Fuchioka, Zhaoming Xie, and Michiel van de Panne.
Opt-mimic: Imitation of optimized trajectories for dynamic
quadruped behaviors. arXiv preprint arXiv:2210.01247,
2022. 2

[9] Scott Fujimoto, Herke Hoof, and David Meger. Address-
ing function approximation error in actor-critic methods. In
International conference on machine learning, pages 1587–
1596. PMLR, 2018. 3

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Interna-
tional conference on machine learning, pages 1861–1870.
PMLR, 2018. 3

[11] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In International

8

conference on machine learning, pages 2555–2565. PMLR,
2019. 3

[12] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lem-
mon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, SM Eslami, et al. Emergence of loco-
motion behaviours in rich environments. arXiv preprint
arXiv:1707.02286, 2017. 3

[13] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. Advances in neural information processing
systems, 29, 2016. 3

[14] Daniel Holden, Taku Komura, and Jun Saito. Phase-
functioned neural networks for character control. ACM
Transactions on Graphics (TOG), 36(4):1–13, 2017. 2

[15] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebas-
tian Risi. Deep learning for video game playing. IEEE Trans-
actions on Games, 12(1):1–20, 2019. 3

[16] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion
graphs. In ACM SIGGRAPH 2008 classes, pages 1–10. 2008.
2

[17] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,
and Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data col-
lection. The International journal of robotics research, 37(4-
5):421–436, 2018. 3

[18] C Karen Liu, Aaron Hertzmann, and Zoran Popović.
Learning physics-based motion style with nonlinear in-
verse optimization. ACM Transactions on Graphics (TOG),
24(3):1071–1081, 2005. 2

[19] C Karen Liu, Aaron Hertzmann, and Zoran Popović. Com-
position of complex optimal multi-character motions. In Pro-
ceedings of the 2006 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 215–222, 2006. 2

[20] Frank Merat. Introduction to robotics: Mechanics and con-
trol. IEEE Journal on Robotics and Automation, 3(2):166–
166, 1987. 2

[21] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval
Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg
Wayne, and Nicolas Heess. Catch & carry: reusable neural
controllers for vision-guided whole-body tasks. ACM Trans-
actions on Graphics (TOG), 39(4):39–1, 2020. 2

[22] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
Van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans-
actions On Graphics (TOG), 37(4):1–14, 2018. 1, 2, 3, 4, 5,
6, 7

[23] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
ized physics-based character control. ACM Transactions on
Graphics (TOG), 40(4):1–20, 2021. 2

[24] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland
Hafner, Gabriel Barth-Maron, Matej Vecerik, Thomas
Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller.
Data-efficient deep reinforcement learning for dexterous ma-
nipulation. arXiv preprint arXiv:1704.03073, 2017. 3

[25] Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran
Popović, and Andrew Witkin. Interactive manipulation of

rigid body simulations. In Proceedings of the 27th an-
nual conference on Computer graphics and interactive tech-
niques, pages 209–217, 2000. 2

[26] Zoran Popović and Andrew Witkin. Physically based mo-
tion transformation. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques,
pages 11–20, 1999. 2

[27] Katherine Pullen and Christoph Bregler. Motion capture as-
sisted animation: Texturing and synthesis. In Proceedings of
the 29th annual conference on Computer graphics and inter-
active techniques, pages 501–508, 2002. 2

[28] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hut-
ter. Learning to walk in minutes using massively parallel
deep reinforcement learning. In Conference on Robot Learn-
ing, pages 91–100. PMLR, 2022. 3

[29] Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018. 3

[30] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems,
pages 5026–5033. IEEE, 2012. 3

[31] Christopher JCH Watkins and Peter Dayan. Q-learning. Ma-
chine learning, 8:279–292, 1992. 3

9

	. Introduction
	. Related Work
	. Kinematic and Physics-based Models
	. Motion Imitation
	. Reinforcement Learning

	. Method
	. Joint Mapping
	. State and Action Spaces
	. Random State Initialization
	. Reward Functions
	. Velocity and Heading Commanding
	. Mass Curriculum
	. Training One Policy for Multiple Motions

	. Results
	. Joint Mapping Results
	. One Policy for Each Motion
	. Skill Selector

	. Summary
	. Conclusion
	. Limitations and Future Works

	. Contributions of team members
	. Acknowledgements

