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Abstract—Collaborative filtering plays an increasingly vital
role in recommendation system to enable personalizing in
product recommendation, and researchers tend to take attempt
on ensemble-based models to achieve higher predictive perfor-
mance. In this report, we propose a novel blending method
for collaborative filtering based on linear regression, gradient
boosting and XGBoost that is built upon Iterative SVD, BFM,
NCF and etc. Our method finally achieves local CV score 0.9674
and public test score 0.9656, which could be regarded as a
significant improvement comparing with our baseline methods.

I. INTRODUCTION

With the development of computer technology and the
Internet, it seems impossible for users to get all the in-
formation in a limited time. As a result, recommendation
systems have become the core competitiveness of many
large companies today, such as Amazon’s product recom-
mendation [1], Tiktok’s video recommendation and Netflix’s
movie recommendation [2]. Most of the current mainstream
recommendation systems use collaborative filtering as the
core [3]. Collaborative filtering utilizes known browsing
information, such as the current user’s historical preferences
and evaluations of the current transaction, to estimate the
current user’s liking for this data.

There are currently many approaches to estimate unseen
future data using different models and from different aspects,
however, many of them are just on par with our baseline
model SVD [4] and ALS .

In this paper, we propose an ensemble based method to
perform collaborative filtering. We train different individual
models and finally concatenate them to create an ensemble
model. Experiments show that our ensemble model has
better performance than the two baseline models and all
individual models. Our implementation is publicly available
at https://github.com/xiyichen/collaborative-filtering.

II. PRELIMINARIES

A. Problem Settings

In this project, we are provided with 1, 176, 952 integer
ratings, from 1 to 5, given by n = 10, 000 users to m =
1, 000 movies. We convert these known ratings into a sparse
matrix A with n rows and m columns, where Aij represents
the preference by user i to movie j. It is a very sparse
matrix with sparsity of only 11.77%. We denote the set of
known ratings as I = {(i, j) : Aij is known}. Our task is to
predict the missing ratings in the user-movie matrix A, so

we can provide movie recommendations to individual users.
Root Mean Squared Error (RMSE) between observed and
predicted ratings will be used to quantify the quality of our
predictions. For a given set of observed ratings O,

RMSE =

√√√√ 1

|O|
∑

(i,j)∈O

(Aij − Âij)2 (1)

where Âij denotes the predicted value of Aij .

B. Data Preprocessing

Some of the presented models in this paper require
preprocessing on the matrix A before training, and the
preprocessing methods are described here.

1) Column-wise Standard Normalization: Entries in each
column of the matrix A are normalized to have a mean
of 0 and a variance of 1. Reversely, a matrix A′ can
be denormalized using the column means and standard
deviations calculated in the normalization process for A.

2) Imputing Missing Ratings: Some of the approaches
presented in this paper operate on a matrix without missing
entries. Since the observed matrix A is sparse, missing
entries of A need to be imputed. Denote the imputed matrix
by Ã. Then, ∀(i, j) ∈ I, Ãij = Aij . We consider the
following imputing methods:

i. Zero imputing: For each (i, j) /∈ I, Ãij = 0.
ii. Column mean imputing: For each (i, j) /∈ I, Ãij =

Āj , where Āj represents the mean of the jth column of A.

III. MODELS AND METHODS

In this section, we first present two baseline models,
then other individual models, and finally the ensemble
model used in our collaborative filtering approach. Optimal
parameters for each non-baseline model are tuned by 10-fold
cross-validation on I.

A. Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) [4] is a common
method for matrix factorization. Any matrix M ∈ Rn×m

can be decomposed into M = UΣV T , where U ∈ Rn×n,
Σ ∈ Rn×m, and V ∈ Rm×m. U and V are orthogonal
matrices, and Σ is a diagonal matrix with rank(A) positive
singular values on its main diagonal in decreasing order.

We apply SVD to the standard-normalized and zero-
imputed user-movie matrix Ã to decompose it into Ã =
UΣV T . The SVD approach is to approximate Ã by another



low-rank matrix, Â, so that the missing ratings can be
predicted by corresponding entries of Â. The Eckart-Young
theorem states that the optimal (in terms of Frobenius norm
objective) rank k approximation of a matrix Ã is given by
Ãk = UkΣkV

T
k , where Uk ∈ Rn×k, Σk ∈ Rk×k, and

Vk ∈ Rm×k [5]. Uk and Vk is the first k columns of U and
V , respectively. Σk is a diagonal sub-matrix of Σ containing
the k largest singular values. Then, we denormalize Ãk to
obtain our approximation. The optimal k is selected as 9
by cross-validation, and the SVD method serves as the first
baseline in our approach.

B. Alternating Least Squares (ALS)

Considering factored parameterization via U ∈ Rn×k and
V ∈ Rk×m such that A ≈ UV , Alternative Least Squares
(ALS) [6] is an iterative algorithm minimizing the following
non-convex objective function:

L(U, V ) =
1

2
||ΠΩ(A− UV )||2F +

λ

2
(||U ||2F + ||V ||2F ) (2)

where λ > 0 and ΠΩ selects the observed entries in A.
Since the parameter dependencies in Eq. (2) for matrix
factorization form a bipartite graph between the rows of U
and the columns of V [7], we can separate out the part of
the objective depending on a column vj of V (completely
analogous a row ui of U ) as follows

LU (vj) =
1

2
vTj (

∑
i

ωijuiu
T
i + λI)vj − (

∑
i

ωijaiju
T
i )vj

(3)
where ωij denotes if aij , the entry of A at ith row and jth
column, is known. Treating U fixed, the update rule for vj
in each iteration can be derived as

v∗j = (
∑
i

ωijuiu
T
i + λI)−1(

∑
i

ωijaijui) (4)

We apply ALS with k = 3 and λ = 0.1 for 20 iterations
to the standard-normalized and zero-imputed user-movie
matrix Ã to obtain Û and V̂ . U and V are initialized as
the Uk and V T

k matrix from SVD with k = 9 on Ã,
respectively. We then denormalize Â, where Â = Û V̂ , to
obtain our approximation. The ALS method serves as the
second baseline in our approach.

C. Iterative SVD

Iterative SVD is an iterative variant of SVD. The proce-
dure is adapted from the singular value shrinkage operator
introduced by Cai et al. [8]. At each iteration, SVD is applied
to a matrix A′ to decompose it into A′ = U ′Σ′V ′T . Then,
diagonal entries of Σ′ are shrunken by a shrinkage parameter
τ as follows

Σ′
ii = max{0,Σ′

ii − τ} (5)

to obtain Σ′
s. Matrix A′

s is reconstructed as A′
s = U ′Σ′

sV
′T ,

and the observed entries of A′
s are set to their original ratings

to become the A′ in next iteration.

We apply Iterative SVD to the column-mean-imputed
matrix Ã with optimal τ = 38 for 15 iterations to obtain
our approximation.

D. Regularized+Biased SVD (RBSVD)

Regularized SVD (RSVD) is another variant of SVD that
tries to find low-rank approximation using regularized factor
matrices U ∈ Rn×k and V ∈ Rm×k and it has been
demonstrated to substantially improve upon the results of
SVD in collaborative filtering [9]. A. Paterek [10] proposes
to additionally apply separate biases bu for users and bv for
movies. The estimated rating r̂ij for the combination of user
i and movie j is calculated as:

r̂ij = uT
i vj + bui

+ bvj , (6)

and the objective function is formulated as:

Lij = (rij − r̂ij)
2 + λ1(∥ui∥2 + ∥vj∥2) + λ2(bui + bvj − µ)2,

(7)
where µ is the global mean of movie ratings on the train set.
This objective can then be minimized by Stochastic Gradient
Descent We set k = 12, λ1 = 0.075 and λ2 = 0.04 and learn
U , V , bu, bv for 50 epochs. The initial learning rate is set
to 0.05 with a learning rate decay of 0.7 every 5 epochs.

E. Factorization Machines (FM)

Factorization machine is method that combines the advan-
tages of Support Vector Machines (SVM) with factorization
models and is capable of estimating model parameters accu-
rately even under very sparse data [11]. The most commonly
used second-order FM is formulated as a simple quadratic
regression for n input variables:

f(x) = w0 +

n∑
p=1

wpxp +

n−1∑
p=1

n∑
q=p+1

⟨vp, vq⟩xpxq (8)

where w0 ∈ R,w = {w1, ..., wn} ∈ Rn,V = {v1, ..., vn} ∈
Rn×k are trainable parameters. ⟨·, ·⟩ denotes the dot product
of two vectors of size k, where k ∈ N+

0 is a hyperparameter
that defines the dimensionality of the factorization. The use
of the second order allows to model the interactions among
different input variables.

Freudenthaler [12] proposes that FMs can be enhanced
by introducing Bayesian Inference as Bayesian Factoriza-
tion Machines (BFM), which are faster and more scalable
in applications such as recommendation systems. We use
python myFM [13] library to train BFM models and follow
its tutorials as well as the paper of Rendle et al. [14] to build
features.

1) BFM with Base Features: We start with base fea-
tures which are simply one-hot encodings of the user and
movie indices. As a common practice in probabilistic matrix
factorization, user and movie vectors are assumed to be
drawn from separate normal priors: ui ∼ N (µU ,ΣU ), vi ∼
N (µM ,ΣM ). We train a Bayesian Linear Regression (BLR)



model with Gibbs Sampling as the paper of Freudenthaler
[12] on these base features and refer to this model as BFM
Base in later experiments.

2) BFM with Implicit Features: In addition, we include
implicit features for users and movies. User implicit features
are a binary vector recording if each of the movies has been
rated by the user. The vector is normalized by 1√

max(L,1)

where L represents the number of non-zero entries in the
vector. Similarly, movie implicit features are a normalized
vector recording if each of the users has rated this movie.
We assign separate variances to the two sets of implicit
features as for the base features. We combine the base and
the implicit features and train our BFM Base + Implicit
models. In addition to BLR with Gibbs sampler, we also try
ordinal probit regression [15] [16].

We also attempt to handcraft additional auxiliary features
about the users and movies such as their statistical features
and encoded latent vectors from our autoencoders. However,
none of these attempts helps further. The only 2 hyperparam-
eters for all our Bayesian FM models are the aforementioned
factorization dimensionality k and the number of iterations
N . We set them to 10 and 500 respectively.

F. Autoencoders

Autoencoder is a type of symmetric neural network to
learn efficient, low-dimensional data representations in an
unsupervised manner [17]. It learns a latent space of di-
mension k to represent a nonlinear dimension reduction of
the input vector. Consisting of an encoder ϕ : Rd → Rk

and a decoder θ : Rk → Rd (where k < d), the network
is learned to minimize the reconstruction error between the
input x and the output x̂ = θ(ϕ(x)). Autoencoder has been
proven effective in collaborative filtering [18] [19] [20]. In
this work, we first test a vanilla deep autoencoder similar to
the paper of Ginsburg et al. [20] and then extend it to its
probabilistic variant, variational autoencoder [21].

1) Vanilla Autoencoder (AE): For a user vector xu ∈ Rm,
we minimize its masked mean square error:

LRECONxu
=

1

k

k∑
i=1

((xui − x̂ui)
2 · Mu) (9)

where Mu ∈ Rm contains binary values to represent if the
rating of each movie in the user vector is recorded.

Our autoencoder has an architecture of [m-256-32-256-
m] with a latent space zu of size k = 32. We find it
benefitial to apply a learnable user bias matrix b ∈ Rn

to the output of the decoder so that x̂u = θ(ϕ(xu)) + bu.
We also attempt to learn a movie bias matrix but it does
not give any improvement. We use LeakyReLU [22] as
activation function and initialize all layer weights with
Kaiming Uniform Initialization [23] since it particularly
considers rectifier non-linearlities. Dropout of 0.5 is applied
to all hidden layers as well as the input to the encoder to

avoid over-fitting. We zero-impute the user-movie matrix and
train the network for 1000 epochs using Adam Optimizer
[24] with an initial learning rate of 0.025 and an exponential
learning rate decay with rate 0.992.

2) Variational Autoencoder (VAE): A common problem
of a vanilla autoencoder is that it only learns to reconstruct
the input with as small loss as possible and disregards the
properties of its latent space. Variational autoencoder [21], a
probabilistic variant of autoencoder, aims to provide better
generative properties by encoding the input as a distribution
over the latent space instead of a single vector. For each user
vector xu, we approximate the intractable posterior p(zu|xu)
with a simpler one q(zu) that is “as close as possible”. Here
we set q(zu) as a diagonal Gaussian distribution q(zu) =
N (µu, diag(σ2

u)) and minimize the Kullback-Leiber (KL)
divergence KL(q(zu)||p(zu|xu)) [25]. We follow the idea of
Liang et al. [26] and formulate the overall objective function
as:

Lβ(xu; θ, ϕ) = Eqϕ(zu|xu) [log pθ(xu|zu)]
−β · KL(qϕ(zu|xu)||p(zu)) (10)

where Eqϕ(zu|xu) [log pθ(xu|zu)] = LRECONxu
represents the

reconstruction error.
Assuming p(zu) = N (0, Ik), we have:

KL(qϕ(zu|xu)||p(zu)) =
1

2

k∑
i=1

(σ2
ϕi
+µ2

ϕi
−1−lnσ2

ϕi
) (11)

Note that β in equation 10 is a tunable hyperparameter.
We compare linear annealing schedule as the paper of Liang
et al. [26] and cyclic annealing schedule as the paper of Fu
et al. [27], and find that cyclic annealing more effectively
reduces the reconstruction error while mitigating the KL-
vanishing problem. Formally, β is scheduled as:

β = min(
(e mod M) · βmax

M ·R
, βmax) (12)

where e is the current epoch, M = 100 denotes the number
of epochs for an annealing cycle, βmax = 0.2 represents
the maximum possible value for β (selected by taking the
optimal value from the linear annealing schedule), and R =
0.5 denotes the portion of epochs within a cycle to increase
β.

The VAE has double output layers of shape 256-32 in
the encoder to predict µϕ(xu) and log σ2

ϕ(xu) (log variance
is predicted instead of standard deviation) separately. We
can then perform reparametrization trick [21] to sample ϵ ∼
N (0, Ik) and reparameterize zu = µϕ(xu) + ϵ ⊙ σϕ(xu) so
that the gradient with respect to ϕ can be back-propagated
through sampling zu. We change the activation function to
tanh as the paper of Liang et al. [26] and initialize all layer
weights with Xavier Initialization [28]. For our VAE, the
exponential decay rate for the learning rate is increased to
0.997 and the number of epochs trained is increased to 2000.



Figure 1. Feature Generation of NCF model

G. Neural Collaborative Filtering (NCF)

Inspired by the Neural Collaborative Filtering (NCF)
method proposed by He et al. [29], we use artificial neural
networks to learn the relationship between the user latent
space, the movie latent space and the ratings. One key task
is to generate informative features. Our feature is combined
as shown in Figure 1.

We first embed users and movies to their latent space,
then use “transform 1” to fit the spatial relationship be-
tween latent spaces and the final feature. Besides, we
also use “transform 2” to change two latent vectors and
then do a element-wise multiplication. Experiments show
that this multiplication feature really improves the testing
performance. The user feature, the movie feature and the
multiplication feature are concatenated to form the final
feature.

We also use a structure with “shortcuts” from movie latent
space to movie feature, which is inspired by ResNet [30].
Experiments prove that these two shortcuts decrease the loss.

After cross validation, we take the embedding dimension
as 128 for both users and movies. “Transform 1” and
“transform 2” are both defined as two dense layer, the first
from 128 to 256 and the second from 256 to 128, all with
ReLU layer and dropout layer of rate 0.1. Note that there
is also a dropout layer of rate 0.05 between the embedding
layer and the first fully-connected layer of transformers. Our
dataset is very easy to be overfitting, so we take a large
weight decay of 1e-4. After we get the feature, we simply
use a hidden layer and RMSE loss to train our regressor.

H. Blending Multiple Models

Due to the possibility that different models may have
better generative ability for different parts of the user-movie
matrix, we attempt to blend multiple models. We empirically
find that some models that produce higher test errors have
lower train errors, so it is unfair to simply perform cross-
validation using predictions from the models learned on
the entire data. Therefore, we preserve all models from
our 10-fold cross validation test and train the blending
models based on the 10% holdout set in each fold. We train
linear regression, XGBoost [31], and Gradient Boosting [32]

models on the 10 folds and average the predictions from all
models to get our blended matrix. We then clip the values
into [1, 5] to get the final predictions. We include all models
we describe above but the two baseline models.

IV. EXPERIMENTS AND RESULTS

Methods Local CV Public Test
SVD (baseline 1) 1.0081 1.0049
ALS (baseline 2) 0.9899 0.9874
Iterative SVD 0.9840 0.9816
RBSVD 0.9820 0.9788
BFM Base (Gibbs) 0.9779 0.9749
BFM Base + Implicit (Gibbs) 0.9715 0.9687
BFM Base + Implicit (Ordinal Probit) 0.9694 0.9672
AE 0.9791 0.9758
VAE 0.9769 0.9749
NCF 0.9889 0.9856
Blending (Linear Regression) 0.9682 0.9659
Blending (XGBoost) 0.9676 0.9656
Blending (Gradient Boosting) 0.9674 0.9656

Table I
EXPERIMENT RESULTS OF ALL OUR MODELS AND BLENDING METHODS.

In this chapter, we introduce the methods and details of
the experiments. We utilize 10-fold cross validation on the
training set and also predict the output on the public test set.
“Local CV” on the first column of table I is the RMSE loss
on cross validation and the “Public Test” is the RMSE loss
on public test set.

All single models outperform the 2 baseline models.
Regarding similar models, the VAE slightly outperforms the
vanilla AE thanks to probabilistic modeling and cyclic an-
nealing KL loss. The introduction of user and movie implicit
features substantially boosts the performance of BFM that is
trained only with the base features. The replacement of BLR
model with ordinal probit further improves the performance.

Meanwhile, all of our 3 blending models further reduces
the local CV score of the best single model by more than
0.001, with XGBoost and Gradient Boosting regressor pro-
ducing equally best results on the public test set. Although
the weights assigned to RBSVD and Bayesian FM by the
linear regressors are negative, we still find that including
them would produce slightly lower CV scores for all of our
blending methods. Both local CV and Public Test prove
that our blending methods are robust and outperform all
individual models and baselines.

V. SUMMARY

In this work, we propose an ensemble-based method
for collaborative filtering, which aggregates approaches like
literative SVD, RBSVD, BFM, NCF and etc via linear
regression, XGBoost and Gradiet Boosting. Judging from
our local 10-fold CV score and public test score, we could
draw a safe conclusion that our ensemble model is reliable
and effective, which also have a significant improvement
compared with baseline models (SVD and ALS).
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