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Figure 1: (Left) Our network architecture. Modified based on DECA [9], we replace DECA’s encoders with temporal
encoders to encode temporal information from video sequences. (Right) Details of our bidirectional-RNN temporal feature
extractors with second-order grid propagation and flow-guided deformable alignment, modified based on BasicVSR++ [5].

Abstract

Most 3D face reconstruction methods have limited abil-
ities to capture fine-scale details. Seeking to produce
more accurate person-specific details, DECA produces UV
displacement map, which contains parameters on both
person-specific details and generic expressions, from low-
dimensional latent codes regressed from input images. Al-
though it demonstrates state-of-the-art performance on
benchmark datasets, computational efficiency, and robust-
ness to occlusions, it could still suffer from the severe ambi-
guity and ill-posedness of in-the-wild images. In this work,
we propose to use the abundant information across frames
from TV series videos. We collect a sequential face dataset
of subjects with continuous movements. We modify DECA
and include bidirectional RNN based temporal feature ex-
tractors to propagate and aggregate temporal inforamtion
across frames. Qualitative evaluation results show that our
method captures more details in facial expressions com-
pared to DECA.

1. Introduction

3D face reconstruction is the task of reconstructing a
face from a 2D image into a 3D mesh. It is a longstand-
ing challenge yet fundamental problem in computer vision,
with wide applications in face recognition [37], face align-
ment [10], image and video editing [13][18], image synthe-
sis [14], and speech-driven facial animation [27].

Recent methods have been able to produce 3D meshes
with fine-scale details such as expression-dependent wrin-
kles and characteristic features such as pores and spots
[12][6][36][15][9]. Among them, DECA [9] robustly pro-
duces a UV displacement map from low-dimensional latent
codes The displacement map contains parameters on both
person-specific details and generic expressions. Along with
the coarse shape, it continues to form a detail shape that
captures detailed facial expressions such as wrinkles. Com-
pared to previous methods on expression-dependent detail
models that require detailed 3D scans as training data [34],
DECA forms the loss functions to compare rendered 2D
faces with inputs without utilizing 3D ground-truths. There-
fore, DECA models can be easily trained on in-the-wild
datasets to enable better generalization.
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Although DECA demonstrates the feasibility of recon-
structing a robust and high-fidelity 3D face mesh with de-
tailed person-specific expressions for a single RGB image
without any human annotations and achieves state-of-the-
art performance on benchmarks datasets, it could still suf-
fer from the severe ambiguity and ill-posedness of in-the-
wild images. To tackle this problem, we utilize the abun-
dant temporal information in videos. Due to the fact that
main characters frequently show up in TV series in differ-
ent scenes with variant environment conditions, we seek
to improve DECA by reconstructing high-fidelity 3D face
meshes from TV series sequences.

We collect a dataset of face sequences from popular TV
series to allow training 3D face reconstruction models with
sequential inputs. We then perform facial keypoints and
face segmentation detections on the data we collect, as re-
quired for training DECA, and transfer a pre-trained DECA
model to our dataset as a baseline test.

Inspired by the exploitation and aggregation of spatio-
temporal information across misaligned video frames in
video super-resolution methods [4][5], we replace the
ResNet50-based [16] encoders in DECA with bidirectional
RNN based temporal encoders with second-order grid prop-
agation. We show in our qualitative evaluations that with the
temporal information, our method could reconstruct better
facial expression details than DECA.

In summary, our main contributions are: 1) Collect
3000+ valid, clear, sequential facial images from 2 TV se-
ries. 2) Preprocess the face captures to obtain facial key-
points and face segmentation masks. 3) Perform a baseline
test to reproduce DECA performance on our own dataset.
4) Improve the model by using temporal encoders to extract
temporal information from the input face sequences.

2. Related Works

In this section, we present a brief literature review on
3D face reconstruction and temporal feature extraction. We
only review methods to recover 3D faces from monocular
2D images. For a more comprehensive overview on 3D face
reconstruction and multi-view approaches, we direct read-
ers to [38] and [8].

2.1. 3D Face Reconstruction

It has been more than two decades since the ground-
breaking work [32] in 1998 that first showed how to de-
rive 3D shape and surface texture of a human face from
a single image. Many methods have followed this work
and compute parameters (pose, shape, expression, etc.) by
utilizing priors on geometries and appearances from pre-
computed 3D face models, either in optimization-based [2]
or learning-based [19] way. However, these methods can
only model limited shape information and produce coarse

reconstructions. Although some other methods directly pre-
dict 3D faces from 2D images without a face model and
could capture more shape variations, these methods require
3D ground-truth [10] or synthetic 3D faces [7] for training.
Therefore, they still have limited capability on capturing
fine-scale detail variations such as expression-dependent
wrinkles.

To obtain more person-specific details beyond the
overly-smooth coarse shapes, another group of methods aim
to personalize the model and recover the missing dimen-
sions for facial details through the following approaches:
personalized reflectance maps, multi-region and sparse de-
formation models, reconstruction of personalized face rigs,
anatomical models and physics, medium-level shape cor-
rectives, and fine-scale detail estimation, etc. [38].

We focus on fine-scale detail estimation that learns from
shading cues of the input image to improve upon coarse re-
constructions. Optimization-based methods, such as [28],
uses shape-from-shading technique to be able to recover
small surface details from monocular images. However,
these methods suffer from computational complexity and
the lack of robustness on occlusions. Learning-based meth-
ods apply refinements upon reconstructed coarse shapes to
obtain more detailed features. These refinements include
computing local wrinkles from high-resolution scans [6]
and predicting displacement maps [15]. Other learning-base
models learn to directly predict meshes [36] or add-on facial
details [12]. However, these methods are either not robust to
occlusions or have limited ability to capture enough details
of facial expressions.

DECA [9] tackles these problems as the first approach
to regress both 3D faces and person-specific animatable
details that change with expression. It regresses vari-
ous latent parameters, including a person-specific detail
code from the input image and builds a UV displacement
map. Combined with the FLAME-based [22] coarse shape,
it reconstructs a detailed shape that incorporates person-
specific fine-scale details. A novel detail-consistency loss
is introduced to disentangle person-specific details from
expression-dependent wrinkles to enable the synthesis of
realistic person-specific wrinkles with person-specific de-
tails unchanged. DECA achieves state-of-the-art perfor-
mance on benchmarks datasets for 3D face reconstruction,
performs reconstruction in real time, and is robust to occlu-
sions.

Although DECA has improved upon most of the limita-
tions of previous works on detail reconstruction, it is still
prone to suffer from the severe ambiguity and ill-posedness
of in-the-wild images. In this work, we propose to utilize
the abundant information in videos by extracting tempo-
ral features from variant facial expressions in consecutive
frames. We review methods for temporal feature extraction
in 2.2.



2.2. Temporal Feature Extraction

Temporal feature extraction is widely used in com-
mon video processing tasks such as video super-resolution
(VSR), video deblurring, and frame interpolation. To ex-
tract temporal information across frames, many methods
adopt recurrent frameworks. In the domain of VSR, RSDN
[17] uses a uni-directional recurrent network to decompose
sequence frames into components and aggregate informa-
tion from current and previous frames to super-resolve each
frame. BasicVSR [4] proposes to use bidirectional propaga-
tion with optical flow-based feature alignment and outper-
forms most of the previous works. BasicVSR++ [5] builds
upon BasicVSR and introduces two modifications: second-
order grid propagation and flow-guided deformable align-
ment. It more effectively propagates information through
misaligned frames and outperforms existing state-of the-art
methods while maintaining efficiency.

Inspired by the effectiveness and efficiency of feature
propagation and aggregation across frames, we apply it to
the domain of 3D face reconstruction and demonstrate its
effectiveness for detail reconstruction on face sequences.

3. Review of DECA Reconstruction Pipeline
In this section, we provide a brief review of the DECA

reconstruction pipeline. DECA applies two ResNet50-
based [16] encoders Ec and Ed to encode parameters from
the input image. Ec regresses 3 camera parameters (c), 50
albedo parameters (α), 27 light parameters (l), 100 FLAME
shape parameters (β), 6 pose parameters (θ), 50 expression
parameters (ψ). In total, it predicts a 236-dimensional latent
code. These parametes are then used to calculate an albedo
map, a shaded face image, and a coarse shape. Ed predicts
a 128-dimensional detail code (δ) which represents subject-
specific details. This derail code is then used to produce a
UV displacement map.

The FLAME-based [22] coarse shape M(β, θ, ψ) is
computed as:

M(β, θ, ψ) =W (Tp(β, θ, ψ), J(β), θ,W), (1)

where W represents blend skinning function that rotates
vertices T around joints J . W represents the blend weights.
Tp(β, θ, ψ), denotes the template with neutral face with
added shape, pose, and expression offsets, computed as:

Tp(β, θ, ψ) = T +BS(β;S)+BP (θ,P)+BE(ψ, E), (2)

where BS , BP and BE are shape, pose, and expression
blendshapes, respectively.

To compute the detailed shape,M and its surface normal
N are first converted to UV space as Muv and Nuv . The
detail shape M ′ is then computed as:

M ′
uv =Muv +D ⊙Nuv, (3)

where D denotes the vector obtained from decoding the
concatenation of δ, θ, and ψ by Fd. ⊙ denotes the
Hadamard product.

DECA uses a Spherical Harmonics (SH) based [23] il-
lumination model. The shaded face image B is computed
as:

B(α, l,Nuv) = A(α)i,j ⊙
9∑

k=1

lkHk(Ni,j), (4)

where A represents albedo map computed from albedo pa-
rameters α, and H denotes SH basis and coefficients.

Finally, DECA renders 2D image Ir using the differen-
tiable rasterizer from Pytorch3D [25] R:

Ir = R(M̄,B, c), (5)

where M̄ = M for coarse reconstruction and M̄ = M ′ for
detailed reconstruction.

4. Approach
4.1. Data Collection

Figure 2: Three sequences from our dataset. Row 1 and
row 2 are selected from Castle and row 3 is selected from
Friends. Note that the face captures from Friends have
lower resolutions and more motion blurs (see column 6
of row 3 as an example). In addition, since characters in
Friends may not show up in continuous frames, sequences
of Friends contain less temporal information.

We collect face sequences of TV series characters from
the TVQA dataset [21], a large-scale video QA dataset
based on 6 popular TV shows. Frames are all selected from
2 of the TV shows: Castle and Friends, where only one
character shows up and has consecutive movements for over
10 frames in the same scene (not necessarily in continuous
frames). Among these we build sequences of 10 frames for
each individuals. In total, we collect 3000+ valid, clear fa-
cial images from sequences under a diverse set of environ-
ment conditions (lighting, occlusion, resolution, etc.). We
use FaceNet [30] to perform face detection and recognition.
Each detected face is cropped and resized into 224x224. It
is worth noticing that the face captures from Friends orig-
inally have lower resolutions and more motion blurs, and
they contain less temporal information. Figure 2 shows 3
sequences from our data.



Figure 3: DECA results on Castle and Friends sequences trained with our dataset. Red points in predicted keypoints are the
ones predicted incorrectly.

4.2. Data Preprocessing

As required for DECA training, we perform keypoint de-
tection and face segmentation on each face image in our
own dataset. We use 2D-FAN in [3] to extract 68 2D fa-
cial keypoints from each face image. To get segmentation
masks, we use a BiSeNet [35] based face parsing tool [1].
We combine predicted regions that represent skin, brows,
eyes, nose, mouth, and lips as the predicted segmentation
mask 1.

4.3. Reproducing DECA Performance

To evaluate the quality of the 3D faces we can get with-
out utilizing temporal information, we first test the original
DECA architecture on our dataset. We use the pre-trained
DECA model and train on our dataset, inputting individual
faces. We show results on two sequences in figure 3. Al-
though DECA is able to produce reasonable 3D faces on
our test inputs, we notice several limitations: some key-
points are not predicted correctly; faces with motion blurs
and profile views are not well reconstructed; some facial
expressions in the detail shapes do not match well with the
inputs.

4.4. Method Improvement

In order to utilize the temporal information, we mod-
ify the DECA architecture to allow inputting a sequence of
faces. We replace the encoders Ec and Ed with two tem-
poral encoders ETc

and ETd
. In each temporal encoder, a

bidirectional RNN based temporal feature extractor is used
to extract temporal information across all frames in the se-
quence. Figure 1 illustrates the overall architecture of our
modified network.

1Our adapted version to perform face segmentation:
https://github.com/xiyichen/face-parsing.PyTorch

4.4.1 Temporal Encoder

layer name output size layer components
head 224x224 3x3, 64

down1 112x112

(
3x3, 64
3x3, 64

)
x5

3x3, 64, stride 2

rnn propagation 112x112

Flow-Guided Deformable Alignment [5]
Feature Concatenation

3x3, 64
LeakyReLU(

3x3, 64
3x3, 64

)
x5

rnn fusion 112x112

Feature Concatenation
3x3, 64

LeakyReLU(
3x3, 64
3x3, 64

)
x5

down2 56x56

(
3x3, 64
3x3, 64

)
x5

3x3, 64, stride 2

layer1 56x56

 1x1, 64
3x3, 64
1x1, 256

x3

layer2 28x28

 1x1, 128
3x3, 128
1x1, 512

x4

layer3 14x14

 1x1, 256
3x3, 256

1x1, 1024

x6

layer4 7x7

 1x1, 512
3x3, 512

1x1, 2048

x3

avgpool 1x1 average pooling

Table 1: Overall architecture of our temporal encoder.
Residual blocks are shown in brackets with the numbers
of blocks stacked stated on their right. All residual blocks
we use contain batch normalizations between two convolu-
tional layers. Stride and padding for convolutional layers
are both set to 1.

https://github.com/xiyichen/face-parsing.PyTorch


Table 1 shows the detail components of all layers in our
encoder. The input images of a sequence of T frames first
go through a convolutional layer “head” to expand the chan-
nel size to 64. They are then downsampled by a factor of 2
using layer “down1”, consisting of 5 residual blocks and a
convolutional layer with kernel size 3 and stride 2. After
that, a bidirectional RNN is used to extract temporal fea-
tures, which we will explain in 4.4.2. A second downsample
layer “down2” is then used to further downsample the fea-
tures by 2. The rest of the architecture remains the same as
the encoder in DECA, containing 4 “bottleneck” blocks in
ResNet50 [16] followed by average pooling and two fully-
connected layers to regress low-dimensional latent codes.

4.4.2 Temporal Feature Extractor

We apply the idea of second-order grid propagation in a
bidirectional RNN with flow-guided deformable alignment
as in BasicVSR++ [5] and build a temporal feature extrac-
tor. Instead of performing super-resolution, we remove the
upsampling part and only use the bidirectional RNN to ex-
tract temporal features from all frames in the sequence. The
temporal feature extractor contains two parts: propagation
and fusion.

The propagation part consists of 2L RNN layers:
backward1, forward1, ... , backwardL, forwardL, prop-
agating intermediate features backward and forward alter-
natively, as shown in the right part of figure 1. Second-order
grid propagation in BasicVSR++ is applied to integrate in-
termediate features from the neighboring two frames (the
previous two for a forward layer or the next two for a
backward layer). The propagated feature f̂ ji for the i-th
frame in the j-th RNN layer is computed as:

f̂ ji = A
(
gi, f

j
i−1, f

j
i−2, si→i−1, si→i−2

)
2, (6)

where A represents the flow-guided deformable alignment
block as in BasicVSR++, gi denotes the input features (out-
puts from “down1” layer), f ji−1 and f ji−2 denote interme-
diate features from (i-1)-th and (i-2)-th frames, and si→i−1

and si→i−2 represent optical flows from the i-th frame to
the (i-1)-th and (i-2)-th frames. As in BasicVSR++, we use
a pre-trained SPyNet [24] as our flow network.

The final intermediate feature f ji is then computed as:

f ji = f̂ ji +R
(
c
(
f j−1
i , f̂ ji

))
, (7)

where R represents a stack of residual blocks (a convo-
lutional layer with kernel size 3, followed by a Leaky
ReLU [33], followed by 5 residual blocks) and c represents
channel-wise concatenation.

The fusion part consists of the same stack of residual
blocks R. The output temporal feature of the i-th of frame,

2f0
i = gi; s0→−1 = s0→−2 = s1→−1 = f−1 = f−2 = 0

τi, which we will then forward to “down2” layer, is com-
puted as:

τi = R
(
c
(
gi, f

backward1
i , ..., fforwardL

i

))
, (8)

where we concatenate the intermediate features of i-th
frame in all 2L RNN layers and the input gi and pass it
through the residual blocks.

4.5. Loss Functions

We use the same loss functions as in DECA to compare
the rendered 2D (coarse/detailed) faces with the input face,
but on a frame-by-frame basis. For coarse reconstruction on
the i-th frame, we compute the reconstruction loss Lcoarsei

as:

Lcoarsei = Llmki + Leyei + Lphoi + Lidi + Lsci + Lregi ,
(9)

where Llmk, Leye, Lpho Lid, Lsc, Lreg represent landmark
loss, eye closure loss, photometric loss, identity loss, shape
consistency loss and regularization, respectively.

For detail reconstruction on the i-th frame, we compute
the reconstruction loss Ldetaili as:

Ldetaili = LphoDi
+Lmrfi+Lsymi

+Ldci+LregDi
, (10)

where LphoD, Lmrf , Lsym, Ldc, LregD represent photo-
metric detail loss, ID-MRF loss, soft symmetry loss, detail
consistency loss, and detail regularization, respectively.

We direct readers to the DECA paper for more details on
each components of the loss functions.

4.6. Implementation & Training Details

Due to the small size of our dataset, we first train a pre-
train model for 10000 epochs, and then train the coarse
model for 500 epochs, and finally train the detail model for
10000 epochs. ETc

is fixed while training the detail model.
Batch size is set to 2. The number of frames in a sequence,
T , is set to 5. The number of RNN layers in each direc-
tion, L, is set to 2. All loss weights remain unchanged from
DECA. Adam optimizer [20] is used with a learning rate
of 1e − 4. Our code is modified based on DECA and Ba-
sicVSR++ and is publicly available on GitHub. 3

5. Qualitative Evaluation
We compare our modified model with temporal encoders

with the original DECA, both trained on our own dataset.
We show visualization results in figure 4. Our method
shows improvements in facial expression reconstruction
over DECA, especially in details of mouths. Even in dark

3https://github.com/xiaoxiaokongxi/Learning-to-Reconstruct-3D-
Faces-by-Watching-TV

https://github.com/xiaoxiaokongxi/Learning-to-Reconstruct-3D-Faces-by-Watching-TV
https://github.com/xiaoxiaokongxi/Learning-to-Reconstruct-3D-Faces-by-Watching-TV


Figure 4: Qualitative evaluation results. (left) DECA v.s. our improve method with temporal encoders on a sequence from
Castle in our dataset. The circles show improvements in facial expressions (especially details of mouths). Although there are
still incorrect predictions for facial keypoints (see red points in row 3), they align better with the ground truths. (right) Our
method on a sequence in dark scene in Castle. The facial details could still be accurate in these settings.

environments, our method could still predict accurate detail
shapes.

We do not present quantitative evaluation results due to
the lack of ground truth 3D face meshes of our own dataset.
We direct readers who are interested in quantitative evalu-
ation on our work to 3D face benchmark datasets such as
[29] and [11] to evaluate accuracy of the coarse shapes. Al-
though there is no temporal sequences in these benchmark
datasets, we believe that solid performance on these bench-
marks would ensure the predictive power of our model for
both individual and sequential inputs.

6. Conclusion & Future Works

In this work, we show that using temporal encoders to
extract temporal information from sequential faces is ben-
eficial for facial details reconstruction, even in very dark
light conditions. However, our method still have some lim-
itations: 1) Our dataset contains faces with motion blurs
(mostly in sequences from Friends) which could not be re-
constructed accurately. Face deblurring methods for single
frames [31] or videos [26] could be applied to these blurring
frames. 2) Although the detail consistency loss in DECA
disentangles identity-dependent and expression-dependent
facial details, we notice in detail shapes that some expres-
sions may still be influenced by features from other parts

due to feature fusion. How to disentangle the detail code
effectively can be a good topic for future works.

Future works could also focus on 1) reconstructing 3D
meshes from a multi-view perspective to ensure shape con-
sistency across frames in the sequence, 2) integreting ren-
dered images and input sequences into a training loop to
improve 3D reconstruction.

7. Work Distribution

Mengya Liu contributes on data collection and reproduc-
ing DECA performance. Jiezhang Cao contributes on im-
plementing the temporal encoder, training, and evaluation.
Tianhao Li contributes on data collection, data preprocess-
ing, and reproducing DECA performance. Xiyi Chen con-
tributes on data preprocessing and writing the report.
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